Abstract:
A combustion system having a furnace defining a combustion chamber includes a first burner disposed at an upper elevation of the combustion chamber and a second burner and a third burner disposed at a lower elevation of the combustion chamber. A first duct extends vertically to convey therein a fuel flow of gas and pulverized fuel. A second duct branches from the first duct to the first burner to convey a first portion of the fuel flow, which is fuel lean, to define a fuel lean flow, wherein a second portion of the fuel flow passes through the first duct as a fuel rich flow. A third duct includes one end disposed longitudinally within the first duct. An impeller is disposed within the first duct upstream of the branching of the second duct and downstream of the one end of the third duct disposed in the first duct. The impeller includes a plurality of blades to direct outwardly the pulverized fuel of the fuel rich flow to provide a fuel reduced content flow passing through the second duct to the second burner, and a fuel concentrated content flow passing through first duct to the first burner.
Abstract:
A boiler includes an enclosure having at least a supply for fuel and oxidizer and at least a supply for a SNCR reagent. The supply for the SNCR reagent includes at least a regulation valve for the SNCR reagent. The boiler includes at least a sensor for measuring information indicative of the NOx concentration over at least one given enclosure cross section. The boiler includes a controller connected to the at least a sensor and to the at least a regulation valve. The controller regulates the SNCR reagent supply according to the measured information indicative of the NOx concentration.