Abstract:
Apparatus and methods are provided for interfacing a surgical laser with an eye using a patient interface device that minimizes aberrations through a combination of a contact lens surface positioning and a liquid medium between an anterior surface of the eye and the contact lens surface. Further, support rings, ocular stability devices, and methods for interfacing an eye during laser surgery are provided. In an embodiment, by way of example only, a support ring includes a first end surface, a second end surface opposite the first end surface, and an outer surface extending between the first end surface and the second end surface. The second end surface has a width that is greater than a width of the first end surface and extends toward a central opening in the support ring to define a concave curvature configured to substantially match a curvature of a patient's eye. The outer surface includes an annular groove formed adjacent the first end surface and a plurality of exterior vacuum channels spaced around the annular groove and extends axially from the annular groove to the second end surface.
Abstract:
Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for creating synchronized three-dimensional laser incisions. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to synchronize an oscillation of the XY-scan device and an oscillation of the Z-device to form an angled three-dimensional laser tissue dissection.
Abstract:
Apparatus and methods are provided for interfacing a surgical laser with an eye using a patient interface device that minimizes aberrations through a combination of a contact lens surface positioning and a liquid medium between an anterior surface of the eye and the contact lens surface. Further, support rings, ocular stability devices, and methods for interfacing an eye during laser surgery are provided. In an embodiment, by way of example only, a support ring includes a first end surface, a second end surface opposite the first end surface, and an outer surface extending between the first end surface and the second end surface. The second end surface has a width that is greater than a width of the first end surface and extends toward a central opening in the support ring to define a concave curvature configured to substantially match a curvature of a patient's eye. The outer surface includes an annular groove formed adjacent the first end surface and a plurality of exterior vacuum channels spaced around the annular groove and extends axially from the annular groove to the second end surface.
Abstract:
Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for creating synchronized three-dimensional laser incisions. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to synchronize an oscillation of the XY-scan device and an oscillation of the Z-device to form an angled three-dimensional laser tissue dissection.
Abstract:
Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for creating synchronized three-dimensional laser incisions. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to synchronize an oscillation of the XY-scan device and an oscillation of the Z-device to form an angled three-dimensional laser tissue dissection.
Abstract:
The field of the invention relates to systems and methods for ophthalmic laser procedure and, more particularly, to systems and methods for dynamic fixation used in the fixation of the eye(s) of a patient during laser-assisted ophthalmic surgery and/or ophthalmic diagnostic and measurement systems where visualization and concentration on a target are desired. The invention generally enhances the alignment between the eye and a laser beam of a laser eye surgery system using visual fixation system and laser delivery optics. The visual fixation system allows a patient's eye(s) to be accurately focused at one or more fixation targets.
Abstract:
Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for creating synchronized three-dimensional laser incisions. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to synchronize an oscillation of the XY-scan device and an oscillation of the Z-device to form an angled three-dimensional laser tissue dissection.
Abstract:
Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for creating synchronized three-dimensional laser incisions. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to synchronize an oscillation of the XY-scan device and an oscillation of the Z-device to form an angled three-dimensional laser tissue dissection.
Abstract:
Apparatus and methods are provided for interfacing a surgical laser with an eye using a patient interface device that minimizes aberrations through a combination of a contact lens surface positioning and a liquid medium between an anterior surface of the eye and the contact lens surface. Further, support rings, ocular stability devices, and methods for interfacing an eye during laser surgery are provided. In an embodiment, by way of example only, a support ring includes a first end surface, a second end surface opposite the first end surface, and an outer surface extending between the first end surface and the second end surface. The second end surface has a width that is greater than a width of the first end surface and extends toward a central opening in the support ring to define a concave curvature configured to substantially match a curvature of a patient's eye. The outer surface includes an annular groove formed adjacent the first end surface and a plurality of exterior vacuum channels spaced around the annular groove and extends axially from the annular groove to the second end surface.
Abstract:
The field of the invention relates to systems and methods for ophthalmic laser procedure and, more particularly, to systems and methods for dynamic fixation used in the fixation of the eye(s) of a patient during laser-assisted ophthalmic surgery and/or ophthalmic diagnostic and measurement systems where visualization and concentration on a target are desired. The invention generally enhances the alignment between the eye and a laser beam of a laser eye surgery system using visual fixation system and laser delivery optics. The visual fixation system allows a patient's eye(s) to be accurately focused at one or more fixation targets.