Abstract:
System and method for analyzing changes in a fluid flowing through a conduit, including defining at least one coordinate within said conduit, said conduit having a first plurality of slices, receiving at least one known value for at least one property of the fluid, measuring said fluid using magnetic resonance, determining at least one image from the measured fluid, the at least one image having a second plurality of slices for said at least one coordinate, determining a second set of values for said at least one property of said fluid, comparing the first set of values and second set of values for said at least one property to determine a difference value, checking deviation of the determined difference from a predetermined value for said fluid, and issuing an alert if the deviation is not substantially zero.
Abstract:
The application describes an MRD-based reactor. The reactor is characterized by a continuous wall portion, and is in connection with a MRD, adapted for performing localized NMR spectroscopy of the medium inside the reactor. MRD-based reactors, in which the MRD is at least partially inside the reactor or reaction media, and those in which the MRD accommodates the reactor, are also introduced. Lastly, the invention teaches an in situ method for controlling and analyzing of a reaction. The method makes use of an MRD-based reactor; and comprises applying a magnetic field within the reactor, especially for performing a plurality of localized spectroscopic measurements and either real time or offline analyzing and/or controlling of reactions in the flowing media.
Abstract:
A method of determining rheological properties of a fluid. The method includes: providing an open-bore tube and defining within the bore a three dimensional grid (3DG) of voxels; defining at least an inlet cross section (ICS) and an outlet cross section (OCS); defining a volume of interest within the bore between the ICS and the OCS; obtaining rheological properties of the fluid; applying a pressure gradient to the bore between the ICS and the OCS; and nuclear magnetic resonance imaging the fluid within the volume of interest to determine various aspects of the fluid.