Abstract:
A network having distribution of access point loading includes access points to which mobile stations can associate themselves based upon access point beacon signal levels and loading levels for the various access points. A mobile station receives beacon signals from various access points and determines a signal strength for the received beacon signals. The mobile station also receives access point loading information from the access points. The mobile station associates with an access point based upon the access point beacon signal strengths and the access point loading information.
Abstract:
A method for setting and adjusting MAC fragmentation threshold for IEEE 802.11 networks operating at different data rates is presented. The fragmentation threshold is adjusted based on throughput performance, delay constraints and hidden node influence.
Abstract:
A network includes access points that admit/terminate mobile station associations based upon the loading level of the access point and/or whether a mobile station can associate with a further access point. Mobile stations transmit information indicative of the access points to which they can associate. The access points determine whether to admit/terminate a mobile station association based upon access point loading.
Abstract:
A method of shaping data packet transmissions by nodes in a wireless network is presented. Each node sets a maximum limit for MAC service data unit size based on data rate so that maximum transmission times for data packet transmissions by all of the nodes are approximately the same.
Abstract:
A method and apparatus for a high-capacity cellular network by improved sectorization and interleaved channel assignment is presented. Data transmission over a cellular network is carried out by implementation of a sectorization scheme, called the Narrow-Beam Quad-sector Cell (NBQC) sectorization scheme, and the corresponding Interleaved Channel Assignments (ICA). The NBQC sectorization scheme calls for each cell of a cellular network to be divided into four sectors, with each sector covered by a 60 degree antenna. Use of the NBQC sectorization scheme allows for implementation of the corresponding ICA, in which assignment of transmission channels to each cell is based on a re-use factor of Nnull2. Accordingly, the interleaved channel assignments allow for the use of the transmission channels in cells which are adjacent in the cellular network.