Abstract:
Apparatus, methods and articles of manufacture to predict vectored digital subscriber line (DSL) performance gains are disclosed. A disclosed example method includes determining a model coefficient of a noise-to-margin ratio (NMR) model from performance data measured for a DSL subscriber loop prior to provisioning of vectoring for the DSL subscriber loop, computing, using the model coefficient, a first NMR value with disturbers enabled and a second NMR value with disturbers disabled, and estimating an expected vectoring performance gain for the DSL subscriber loop based on the first and second NMR values.
Abstract:
Apparatus, methods and articles of manufacture to predict vectored digital subscriber line (DSL) performance gains are disclosed. A disclosed example method includes determining a model coefficient of a noise-to-margin ratio (NMR) model from performance data measured for a DSL subscriber loop prior to provisioning of vectoring for the DSL subscriber loop, computing, using the model coefficient, a first NMR value with disturbers enabled and a second NMR value with disturbers disabled, and estimating an expected vectoring performance gain for the DSL subscriber loop based on the first and second NMR values.