Abstract:
A condensate separator for an exhaust gas measuring system. The condensate separator includes a housing with condensate discharge opening, an inlet opening arranged in the housing, a cooled inlet line which introduces a fluid into the housing, and a gas outlet port with a gas entrance and a gas exit. The cooled inlet line opens into the inlet opening. The gas outlet port opens into a gas outlet line. A cross-sectional area of the gas entrance of the gas outlet port is larger than a cross-sectional area of the gas exit of the gas outlet port.
Abstract:
A switch cabinet for an exhaust-gas measurement installation includes a cabinet body with two side walls, a ceiling, a floor, a front side and a back wall, a door to close the front side, a measurement gas distributor arranged in the cabinet body with an outlet, a coupling element fastened to the measurement gas distributor to form the outlet, at least one measuring device arranged in the cabinet body with an inlet, and a coupling element fastened to the at least one measuring device to form the inlet. The inlet is connected to the outlet to provide a gas-tight connection. The measurement gas distributor moves relative to the cabinet body so that the coupling element fastened to the measurement gas distributor and forming the outlet can be connected by insertion to the coupling element fastened to the at least one measuring device and forming the inlet.
Abstract:
A device for determining a concentration of at least one gas in a sample gas stream includes an analysis chamber, a detector, and a connecting channel. The analysis chamber is configured to have the sample gas stream and a reaction gas stream be introduced therein. The sample gas stream and the reaction gas stream are mixed to a gas mixture which reacts so as to emit an optical radiation. The detector is configured to measure the optical radiation. The connecting channel is configured to connect the analysis chamber to the detector. The connecting channel is configured as a light conductor extending from the analysis chamber to the detector.
Abstract:
A device for determining a concentration of at least one gas in a sample gas stream includes an analysis chamber, a detector, and a connecting channel. The analysis chamber is configured to have the sample gas stream and a reaction gas stream be introduced therein. The sample gas stream and the reaction gas stream are mixed to a gas mixture which reacts so as to emit an optical radiation. The detector is configured to measure the optical radiation. The connecting channel is configured to connect the analysis chamber to the detector. The connecting channel is configured as a light conductor extending from the analysis chamber to the detector.
Abstract:
An exhaust-gas sampling system includes a main conveying line, a main throughput pump which conveys a sample gas in the main conveying line, a sample gas bag, a sample gas withdrawal line which fluidically connects the main conveying line to the sample gas bag, a throughflow control element arranged in the sample gas withdrawal line, an analyzer, a sample gas analysis line which connects the analyzer to the sample gas bag, an evacuation line which establishes a fluidic connection between the main throughput pump and the sample gas bag, and a first valve arranged in the evacuation line. The first valve opens and closes the evacuation line.