摘要:
A method, programmed medium and system are disclosed which provide for end-to-end QoS for a set of processes that comprise a workload over nfs. A set of processes that comprise a workload such as the processes of a WPAR, or an entire LPAR are given a class designation and assigned priority/limits. The data are then passed to the server which allocates resources based on the sum total of all the current classes and their priorities and/or limits. This requires re-engineering the nfs client code to be workload-aware and the nfs server code to accommodate the resource allocation and prioritization needs of the nfs clients.
摘要:
A method, programmed medium and system are disclosed which provide for end-to-end QoS for a set of processes that comprise a workload over nfs. A set of processes that comprise a workload such as the processes of a WPAR, or an entire LPAR are given a class designation and assigned priority/limits. The data are then passed to the server which allocates resources based on the sum total of all the current classes and their priorities and/or limits. This requires re-engineering the nfs client code to be workload-aware and the nfs server code to accommodate the resource allocation and prioritization needs of the nfs clients.
摘要:
A method, programmed medium and system are disclosed which provide for end-to-end QoS for a set of processes that comprise a workload over nfs. A set of processes that comprise a workload such as the processes of a WPAR, or an entire LPAR are given a class designation and assigned priority/limits. The data are then passed to the server which allocates resources based on the sum total of all the current classes and their priorities and/or limits. This requires re-engineering the nfs client code to be workload-aware and the nfs server code to accommodate the resource allocation and prioritization needs of the nfs clients.
摘要:
A method, programmed medium and system are disclosed which provide for end-to-end QoS for a set of processes that comprise a workload over nfs. A set of processes that comprise a workload such as the processes of a WPAR, or an entire LPAR are given a class designation and assigned priority/limits. The data are then passed to the server which allocates resources based on the sum total of all the current classes and their priorities and/or limits. This requires re-engineering the nfs client code to be workload-aware and the nfs server code to accommodate the resource allocation and prioritization needs of the nfs clients.
摘要:
Embodiments comprise a plurality of computing devices that dynamically intercept process application I/O errors. Various embodiments comprise two or more computing devices, such as two or more servers, each having access to a shared data storage system. An application may be executing on the first computing device and performing an I/O operation when an I/O error occurs. The first computing device may intercept the I/O error, rather than passing it back to the application, and prevent the error from affecting the application. The first computing device may complete the I/O operation, and any other pending I/O operations not written to disk, via an alternate path, perform a checkpoint operation to capture the state of the set of processes associated with the application, and transfer the checkpoint image to the second computing device. The second computing device may resume operation of the application from the checkpoint image.
摘要:
Embodiments comprise a plurality of computing devices that dynamically intercept process application I/O errors. Various embodiments comprise two or more computing devices, such as two or more servers, each having access to a shared data storage system. An application may be executing on the first computing device and performing an I/O operation when an I/O error occurs. The first computing device may intercept the I/O error, rather than passing it back to the application, and prevent the error from affecting the application. The first computing device may complete the I/O operation, and any other pending I/O operations not written to disk, via an alternate path, perform a checkpoint operation to capture the state of the set of processes associated with the application, and transfer the checkpoint image to the second computing device. The second computing device may resume operation of the application from the checkpoint image.