Utilizing logical-form dialogue generation for multi-turn construction of paired natural language queries and query-language representations

    公开(公告)号:US11561969B2

    公开(公告)日:2023-01-24

    申请号:US16834850

    申请日:2020-03-30

    Applicant: Adobe Inc.

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media for generating pairs of natural language queries and corresponding query-language representations. For example, the disclosed systems can generate a contextual representation of a prior-generated dialogue sequence to compare with logical-form rules. In some implementations, the logical-form rules comprise trigger conditions and corresponding logical-form actions for constructing a logical-form representation of a subsequent dialogue sequence. Based on the comparison to logical-form rules indicating satisfaction of one or more trigger conditions, the disclosed systems can perform logical-form actions to generate a logical-form representation of a subsequent dialogue sequence. In turn, the disclosed systems can apply a natural-language-to-query-language (NL2QL) template to the logical-form representation to generate a natural language query and a corresponding query-language representation for the subsequent dialogue sequence.

    UTILIZING LOGICAL-FORM DIALOGUE GENERATION FOR MULTI-TURN CONSTRUCTION OF PAIRED NATURAL LANGUAGE QUERIES AND QUERY-LANGUAGE REPRESENTATIONS

    公开(公告)号:US20210303555A1

    公开(公告)日:2021-09-30

    申请号:US16834850

    申请日:2020-03-30

    Applicant: Adobe Inc.

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media for generating pairs of natural language queries and corresponding query-language representations. For example, the disclosed systems can generate a contextual representation of a prior-generated dialogue sequence to compare with logical-form rules. In some implementations, the logical-form rules comprise trigger conditions and corresponding logical-form actions for constructing a logical-form representation of a subsequent dialogue sequence. Based on the comparison to logical-form rules indicating satisfaction of one or more trigger conditions, the disclosed systems can perform logical-form actions to generate a logical-form representation of a subsequent dialogue sequence. In turn, the disclosed systems can apply a natural-language-to-query-language (NL2QL) template to the logical-form representation to generate a natural language query and a corresponding query-language representation for the subsequent dialogue sequence.

Patent Agency Ranking