-
公开(公告)号:US11178368B2
公开(公告)日:2021-11-16
申请号:US16696160
申请日:2019-11-26
Applicant: Adobe Inc.
Inventor: Pulkit Gera , Oliver Wang , Kalyan Krishna Sunkavalli , Elya Shechtman , Chetan Nanda
Abstract: Systems and techniques for automatic digital parameter adjustment are described that leverage insights learned from an image set to automatically predict parameter values for an input item of digital visual content. To do so, the automatic digital parameter adjustment techniques described herein captures visual and contextual features of digital visual content to determine balanced visual output in a range of visual scenes and settings. The visual and contextual features of digital visual content are used to train a parameter adjustment model through machine learning techniques that captures feature patterns and interactions. The parameter adjustment model exploits these feature interactions to determine visually pleasing parameter values for an input item of digital visual content. The predicted parameter values are output, allowing further adjustment to the parameter values.
-
公开(公告)号:US20210158570A1
公开(公告)日:2021-05-27
申请号:US16692503
申请日:2019-11-22
Applicant: Adobe Inc.
Inventor: Tharun Mohandoss , Pulkit Gera , Oliver Wang , Kartik Sethi , Kalyan Sunkavalli , Elya Shechtman , Chetan Nanda
Abstract: This disclosure involves training generative adversarial networks to shot-match two unmatched images in a context-sensitive manner. For example, aspects of the present disclosure include accessing a trained generative adversarial network including a trained generator model and a trained discriminator model. A source image and a reference image may be inputted into the generator model to generate a modified source image. The modified source image and the reference image may be inputted into the discriminator model to determine a likelihood that the modified source image is color-matched with the reference image. The modified source image may be outputted as a shot-match with the reference image in response to determining, using the discriminator model, that the modified source image and the reference image are color-matched.
-
公开(公告)号:US11930303B2
公开(公告)日:2024-03-12
申请号:US17526998
申请日:2021-11-15
Applicant: Adobe Inc.
Inventor: Pulkit Gera , Oliver Wang , Kalyan Krishna Sunkavalli , Elya Shechtman , Chetan Nanda
CPC classification number: H04N9/3182 , G06T5/92 , H04N9/73 , G06T2207/20081
Abstract: Systems and techniques for automatic digital parameter adjustment are described that leverage insights learned from an image set to automatically predict parameter values for an input item of digital visual content. To do so, the automatic digital parameter adjustment techniques described herein captures visual and contextual features of digital visual content to determine balanced visual output in a range of visual scenes and settings. The visual and contextual features of digital visual content are used to train a parameter adjustment model through machine learning techniques that captures feature patterns and interactions. The parameter adjustment model exploits these feature interactions to determine visually pleasing parameter values for an input item of digital visual content. The predicted parameter values are output, allowing further adjustment to the parameter values.
-
公开(公告)号:US20220182588A1
公开(公告)日:2022-06-09
申请号:US17526998
申请日:2021-11-15
Applicant: Adobe Inc.
Inventor: Pulkit Gera , Oliver Wang , Kalyan Krishna Sunkavalli , Elya Shechtman , Chetan Nanda
Abstract: Systems and techniques for automatic digital parameter adjustment are described that leverage insights learned from an image set to automatically predict parameter values for an input item of digital visual content. To do so, the automatic digital parameter adjustment techniques described herein captures visual and contextual features of digital visual content to determine balanced visual output in a range of visual scenes and settings. The visual and contextual features of digital visual content are used to train a parameter adjustment model through machine learning techniques that captures feature patterns and interactions. The parameter adjustment model exploits these feature interactions to determine visually pleasing parameter values for an input item of digital visual content. The predicted parameter values are output, allowing further adjustment to the parameter values.
-
公开(公告)号:US11158090B2
公开(公告)日:2021-10-26
申请号:US16692503
申请日:2019-11-22
Applicant: Adobe Inc.
Inventor: Tharun Mohandoss , Pulkit Gera , Oliver Wang , Kartik Sethi , Kalyan Sunkavalli , Elya Shechtman , Chetan Nanda
Abstract: This disclosure involves training generative adversarial networks to shot-match two unmatched images in a context-sensitive manner. For example, aspects of the present disclosure include accessing a trained generative adversarial network including a trained generator model and a trained discriminator model. A source image and a reference image may be inputted into the generator model to generate a modified source image. The modified source image and the reference image may be inputted into the discriminator model to determine a likelihood that the modified source image is color-matched with the reference image. The modified source image may be outputted as a shot-match with the reference image in response to determining, using the discriminator model, that the modified source image and the reference image are color-matched.
-
公开(公告)号:US20210160466A1
公开(公告)日:2021-05-27
申请号:US16696160
申请日:2019-11-26
Applicant: Adobe Inc.
Inventor: Pulkit Gera , Oliver Wang , Kalyan Krishna Sunkavalli , Elya Shechtman , Chetan Nanda
Abstract: Systems and techniques for automatic digital parameter adjustment are described that leverage insights learned from an image set to automatically predict parameter values for an input item of digital visual content. To do so, the automatic digital parameter adjustment techniques described herein captures visual and contextual features of digital visual content to determine balanced visual output in a range of visual scenes and settings. The visual and contextual features of digital visual content are used to train a parameter adjustment model through machine learning techniques that captures feature patterns and interactions. The parameter adjustment model exploits these feature interactions to determine visually pleasing parameter values for an input item of digital visual content. The predicted parameter values are output, allowing further adjustment to the parameter values.
-
-
-
-
-