Dynamic Hierarchical Empirical Bayes and digital content control

    公开(公告)号:US10956930B2

    公开(公告)日:2021-03-23

    申请号:US16034232

    申请日:2018-07-12

    Applicant: Adobe Inc.

    Abstract: Dynamic Hierarchical Empirical Bayes techniques and systems are described that are implemented to control output of digital content. In one example, a system identifies splitting variables included in data. An amount of loss is then determined for each of the identified splitting variables by the system using a loss function. Based on the determined amounts of loss, the system selects at least one splitting variable from the plurality of splitting variables that are to be used to partition data in a respective node, e.g., a parent node to form a plurality of child nodes. The system, for instance, may select the splitting variable that minimizes the cost, i.e., has the lowest amount of cost. The selected splitting variable is then employed by the system to generate at least one hierarchical level of the hierarchical structure of the statistical model by partitioning data from the parent node into respective child nodes.

    Dynamic Hierarchical Empirical Bayes and Digital Content Control

    公开(公告)号:US20200019984A1

    公开(公告)日:2020-01-16

    申请号:US16034232

    申请日:2018-07-12

    Applicant: Adobe Inc.

    Abstract: Dynamic Hierarchical Empirical Bayes techniques and systems are described that are implemented to control output of digital content. In one example, a system identifies splitting variables included in data. An amount of loss is then determined for each of the identified splitting variables by the system using a loss function. Based on the determined amounts of loss, the system selects at least one splitting variable from the plurality of splitting variables that are to be used to partition data in a respective node, e.g., a parent node to form a plurality of child nodes. The system, for instance, may select the splitting variable that minimizes the cost, i.e., has the lowest amount of cost. The selected splitting variable is then employed by the system to generate at least one hierarchical level of the hierarchical structure of the statistical model by partitioning data from the parent node into respective child nodes.

Patent Agency Ranking