摘要:
A system and method for populating a database with a set of image sequences of an object is disclosed. The database is used to detect localization of a guidewire in the object. A set of images of anatomical structures is received in which each image is annotated to show a guidewire, catheter, wire tip and stent. For each given image a Probabilistic Boosting Tree (PBT) is used to detect short line segments of constant length in the image. Two segment curves are constructed from the short line segments. A discriminative joint shape and appearance model is used to classify each two segment curve. A shape of an n-segment curve is constructed by concatenating all the two segment curves. A guidewire curve model is identified that includes a start point, end point and the n-segment curve. The guidewire curve model is stored in the database.
摘要:
A system and method for populating a database with a set of image sequences of an object is disclosed. The database is used to detect localization of a guidewire in the object. A set of images of anatomical structures is received in which each image is annotated to show a guidewire, catheter, wire tip and stent. For each given image a Probabilistic Boosting Tree (PBT) is used to detect short line segments of constant length in the image. Two segment curves are constructed from the short line segments. A discriminative joint shape and appearance model is used to classify each two segment curve. A shape of an n-segment curve is constructed by concatenating all the two segment curves. A guidewire curve model is identified that includes a start point, end point and the n-segment curve. The guidewire curve model is stored in the database.
摘要:
A method for downsampling fluoroscopic images and enhancing guidewire visibility during coronary angioplasty includes providing a first digitized image, filtering the image with one or more steerable filters of different angular orientations, assigning a weight W and orientation O for each pixel based on the filter response for each pixel, wherein each pixel weight is assigned to a function of a maximum filter response magnitude and the pixel orientation is calculated from the angle producing the maximum filter response if the magnitude is greater than zero, wherein guidewire pixels have a higher weight than non-guidewire pixels, and downsampling the orientation and weights to calculate a second image of half the resolution of the first image, wherein the downsampling accounts for the orientation and higher weight assigned to the guidewire pixels.
摘要:
A method for online optimization of guidewire visibility in fluoroscopic images includes providing an digitized image acquired from a fluoroscopic imaging system, the image comprising an array of intensities corresponding to a 2-dimensional grid of pixels, detecting a guidewire in the fluoroscopic image, enhancing the visibility of the guidewire in the fluoroscopic image, calculating a visibility measure of the guidewire in the fluoroscopic image, and readjusting acquisition parameters of the fluoroscopic imaging system wherein the guidewire visibility is improved.
摘要:
A method for online optimization of guidewire visibility in fluoroscopic images includes providing an digitized image acquired from a fluoroscopic imaging system, the image comprising an array of intensities corresponding to a 2-dimensional grid of pixels, detecting a guidewire in the fluoroscopic image, enhancing the visibility of the guidewire in the fluoroscopic image, calculating a visibility measure of the guidewire in the fluoroscopic image, and readjusting acquisition parameters of the fluoroscopic imaging system wherein the guidewire visibility is improved.
摘要:
A method for downsampling fluoroscopic images and enhancing guidewire visibility during coronary angioplasty includes providing a first digitized image, filtering the image with one or more steerable filters of different angular orientations, assigning a weight W and orientation O for each pixel based on the filter response for each pixel, wherein each pixel weight is assigned to a function of a maximum filter response magnitude and the pixel orientation is calculated from the angle producing the maximum filter response if the magnitude is greater than zero, wherein guidewire pixels have a higher weight than non-guidewire pixels, and downsampling the orientation and weights to calculate a second image of half the resolution of the first image, wherein the downsampling accounts for the orientation and higher weight assigned to the guidewire pixels.
摘要:
A method and system for vessel segmentation in fluoroscopic images is disclosed. Hierarchical learning-based detection is used to perform the vessel segmentation. A boundary classifier is trained and used to detect boundary pixels of a vessel in a fluoroscopic image. A cross-segment classifier is trained and used to detect cross-segments connecting the boundary pixels. A quadrilateral classifier is trained and used to detect quadrilaterals connecting the cross segments. Dynamic programming is then used to combine the quadrilaterals to generate a tubular structure representing the vessel.
摘要:
A method and system for vessel segmentation in fluoroscopic images is disclosed. Hierarchical learning-based detection is used to perform the vessel segmentation. A boundary classifier is trained and used to detect boundary pixels of a vessel in a fluoroscopic image. A cross-segment classifier is trained and used to detect cross-segments connecting the boundary pixels. A quadrilateral classifier is trained and used to detect quadrilaterals connecting the cross segments. Dynamic programming is then used to combine the quadrilaterals to generate a tubular structure representing the vessel.
摘要:
A method and system for building a statistical four-chamber heart model from 3D volumes is disclosed. In order to generate the four-chamber heart model, each chamber is modeled using an open mesh, with holes at the valves. Based on the image data in one or more 3D volumes, meshes are generated and edited for the left ventricle (LV), left atrium (LA), right ventricle (RV), and right atrium (RA). Resampling to enforce point correspondence is performed during mesh editing. Important anatomic landmarks in the heart are explicitly represented in the four-chamber heart model of the present invention.
摘要:
A system and method for detecting an object in a high dimensional image space is disclosed. A three dimensional image of an object is received. A first classifier is trained in the marginal space of the object center location which generates a predetermined number of candidate object center locations. A second classifier is trained to identify potential object center locations and orientations from the predetermined number of candidate object center locations and maintaining a subset of the candidate object center locations. A third classifier is trained to identify potential locations, orientations and scale of the object center from the subset of the candidate object center locations. A single candidate object pose for the object is identified.