Abstract:
The disclosed apparatus, systems and methods relate to determining cross track error between a stored planted location and the actual physical location of plants. An array of active light sensors is mounted on a vehicle for travel above the plants. The array of active light sensors generate an electrical signal from each sensor corresponding to the reflected light from the sensor. A computer system generates a reflectance curve from the array of sensors to determine the location of a plant below the array of sensors and also generates the cross track error.
Abstract:
The disclosed apparatus, systems and methods relate to determining cross track error between a stored planted location and the actual physical location of plants. An array of active light sensors is mounted on a vehicle for travel above the plants. The array of active light sensors generate an electrical signal from each sensor corresponding to the reflected light from the sensor. A computer system generates a reflectance curve from the array of sensors to determine the location of a plant below the array of sensors and also generates the cross track error.
Abstract:
The disclosed apparatus, systems and methods relate to determining cross track error between a stored planted location and the actual physical location of plants. An array of active light sensors is mounted on a vehicle for travel above the plants. The array of active light sensors generate an electrical signal from each sensor corresponding to the reflected light from the sensor. A computer system generates a reflectance curve from the array of sensors to determine the location of a plant below the array of sensors and also generates the cross track error.
Abstract:
Disclosed is apparatus for determining cross track error between a stored planted location and the actual physical location of plants. An array of active light sensors is mounted on a vehicle for travel above the plants. The array of active light sensors generate an electrical signal from each sensor corresponding to the reflected light from the sensor. A computer system generates a reflectance curve from the array of sensors to determine the location of a plant below the array of sensors and also generates the cross track error.
Abstract:
The disclosed apparatus, systems and methods relate to determining cross track error between a stored planted location and the actual physical location of plants. An array of active light sensors is mounted on a vehicle for travel above the plants. The array of active light sensors generate an electrical signal from each sensor corresponding to the reflected light from the sensor. A computer system generates a reflectance curve from the array of sensors to determine the location of a plant below the array of sensors and also generates the cross track error.
Abstract:
A method of quantifying growing plants in an area is disclosed wherein the area is scanned with an active light sensor which provides a data signal when a plant is present that is distinct from the data signal provided when a plant is not present. The data signal is analyzed to determine at least plant population densities, the spacing of plants, the number of emerged plants versus planted seeds, the size of the area that has unproductive plants or an estimate economic and/or yield loss. Overlapping sample areas can be used to improve the accurate quantification of plants.
Abstract:
Disclosed is apparatus for determining cross track error between a stored planted location and the actual physical location of plants. An array of active light sensors is mounted on a vehicle for travel above the plants. The array of active light sensors generate an electrical signal from each sensor corresponding to the reflected light from the sensor. A computer system generates a reflectance curve from the array of sensors to determine the location of a plant below the array of sensors and also generates the cross track error.
Abstract:
A method of quantifying growing plants in an area is disclosed wherein the area is scanned with an active light sensor which provides a data signal when a plant is present that is distinct from the data signal provided when a plant is not present. The data signal is analyzed to determine at least plant population densities, the spacing of plants, the number of emerged plants versus planted seeds, the size of the area that has unproductive plants or an estimate economic and/or yield loss. Overlapping sample areas can be used to improve the accurate quantification of plants.