Abstract:
In various embodiments of the present disclosure, there is provided an energy harvesting apparatus, including: an energy harvester for generating electric power from an ambient source; a power conditioning circuit coupled to the output of the energy harvester; including: a boost converter module; a buck-boost converter module; and a power modification control module; wherein the power modification control module is configured to initialize the energy harvesting apparatus from inactivity to a normal energy harvesting state by operating the boost converter module, and operating the buck-boost converter when an output voltage of the power conditioning circuit rises to a predetermined value. A corresponding method of operating an energy harvesting apparatus is provided.
Abstract:
According to embodiments of the present invention, a transmitter is provided. The transmitter includes a frequency shift keying (FSK) circuit, and a phase shift keying (PSK) circuit coupled in series to the FSK circuit, wherein the FSK circuit is configured, in a first mode of operation, to provide a FSK modulated signal to the PSK circuit, and, in a second mode of operation, to provide a fixed frequency signal to the PSK circuit, and wherein the PSK circuit is configured, in the first mode of operation, to transmit the FSK modulated signal, and, in the second mode of operation, to provide a PSK modulated signal based on the fixed frequency signal received from the FSK circuit.
Abstract:
In various embodiments of the present disclosure, there is provided an energy harvesting apparatus, including: an energy harvester for generating electric power from an ambient source; a power conditioning circuit coupled to the output of the energy harvester; including: a boost converter module; a buck-boost converter module; and a power modification control module; wherein the power modification control module is configured to initialize the energy harvesting apparatus from inactivity to a normal energy harvesting state by operating the boost converter module, and operating the buck-boost converter when an output voltage of the power conditioning circuit rises to a predetermined value. A corresponding method of operating an energy harvesting apparatus is provided.