摘要:
A proactive threshold secret sharing cryptosystem using a set of servers. The cryptosystem is a threshold cryptosystem, in the sense that service is maintained if at least (k+1) out of n servers are active and honest. The secret signature key is compromised only if the adversary breaks into at least (k+1) servers. It is robust in the sense that the honest servers detect faulty ones and the service is not disrupted. It is recoverable, because if the adversary erases all the local information on the server it compromised, the information can be restored as soon as the server comes back to performing the correct protocol. The method and system has proactiveness, which means that in order to learn the secret, the adversary has to break into (k+1) servers during the same round of the algorithm because the shares of the secret are periodically redistributed and rerandomized. The present invention uses a verifiable secret sharing mechanism to get the security requirements during the update between two rounds. The security of the scheme depends on the assumption of intractability of computing logarithms in a field of a big prime order and the EIGamal signature scheme.
摘要:
A method of verifying the authenticity of a message transmitted from a sender to a receiver in a communication system is partitioned into three stages. In the first stage, a key is secretly exchanged between the sender and receiver. This key is a binary irreducible polynomial p(x) of degree n. In addition, the sender and receiver share an encryption key composed of a stream of secret random, or pseudo-random bits. In the second stage, the sender appends a leading non-zero string of bits, which, in the simplest case, may be a single "1" bit, and n tail bits "0" to M to generate an augmented message, this augmented message considered as a polynomial having coefficients corresponding to the message bits. If the length of the message is known and cryptographically verified, then there is no need for a leading "1". The sender then computes a polynomial residue resulting from the division of the augmented message polynomial generated by the key polynomial p(x) exchanged by the sender and receiver. The sender encrypts the computed residue. Preferably, the encryption is done by performing a bitwise Exclusive OR operation between the bits of the residue and the stream of secret bits shared by the sender and receiver. The sender then transmits the message M and the encrypted residue. The third stage is performed by the receiver by decrypting the transmitted encrypted residue at the time of reception. The receiver then appends the decrypted residue to the end of the received message M to obtain a combined bit stream M'. The receiver computes the residue of the division between the binary polynomial represented by the bit stream M' and the key polynomial p(x) exchanged by the sender and receiver. The receiver accepts a received message M as authentic only if the residue computed is zero.
摘要:
A mechanism is provided for establishing a shared secret-key for secure communication between nodes in a wireless network. A first node in the wireless network provides a spreading code to a second node of the wireless network. The second node provides a first input for the key establishment to the first node using communication encoded with the spreading code. Responsive to obtaining the first input from the second node, the first node provides a second input for the key establishment to the second node using communication encoded with the spreading code. Then, the first node and the second node establish the shared secret-key using the first input and the second input.
摘要:
A pairwise key-agreement scheme is provided for creating key agreements non-interactively between pairs of nodes disposed in a hierarchy of nodes. The scheme is non-interactive so that any two nodes can agree on a shared secret key without interaction. In addition, the scheme is identity-based so that any given node only needs to know the identity of peer nodes to compute the shared secret key. All of the nodes are arranged in a hierarchy where an intermediate node in the hierarchy can derive the secret keys for each of its children from its own secret key and the identity of the child. Accordingly, the scheme is fully resilient against compromise of any number of leaves in the hierarchy and of a threshold number of nodes in the upper levels of the hierarchy. The scheme is well-suited for environments such as mobile ad-hoc networks (MANETs), which are very dynamic, have acute bandwidth-constraints and have many nodes are vulnerable to compromise.
摘要:
A method, system and computer program product are disclosed for compressing encrypted data, wherein the data is encrypted by using a block encryption algorithm in a chained mode of operation, and the encrypted data is comprised of a set of N encrypted blocks, C1 . . . CN. In one embodiment, the method comprises leaving block CN uncompressed, and compressing all of the blocks C1 . . . CN in a defined sequence using a Slepian-Wolf code. In an embodiment, the data is encrypted using an encryption key K, and the compressing includes compressing all of the blocks C1 . . . CN without using the encryption key. In one embodiment, the compressing includes outputting the blocks C1 . . . CN as a set of compressed blocks CmprC1 . . . CmprCN-1, and the method further comprises decrypting CN to generate a reconstructed block {tilde over (X)}n, and decrypting and decompressing the set of compressed blocks using {tilde over (X)}n.
摘要:
A method (and structure) of exchange between two parties interconnected by a device or network. A recipient party (verifier) chooses a secret value x for computing a value X=F1(x), where F1 comprises a first predetermined function having at least one argument, the value x being one of the at least one argument of F1. A signing party (signer) chooses a secret value y for computing a value Y=F2(y), where F2 comprises a second predetermined function having at least one argument, the value y being one of the at least one argument of F2. The signer obtains the value X, and the signer has a private key b and a public key B. The signer computes a value s=F3(y,b,X), where F3 comprises a third predetermined function having at least three arguments: the value y, the private key b, and the value X being three arguments of the at least three arguments of F3. There exists a fourth predetermined function F4(x,Y,B) to calculate a value s′, F4 having at least three arguments: the value x, the value Y, and the public key B being three arguments of the at least three arguments of F4, but the value s is not an argument of F4. There exists no secret shared between the verifier and the signer that serves as a basis for any argument in any of the functions F1, F2, F3, and F4. The verifier can consider the values s and s′ as valid authenticators if value s′ is determined to be related in a predetermined manner to value s.
摘要:
A method for network communication privacy between network devices includes communicating first and second network enabled devices with a network, the first and second network devices in communication via a main communication channel. Respective network addresses of the first and second network enabled devices are dynamically and automatically changed while maintaining the main communication channel between the first and second network enabled devices. Subsequent network addresses of the first and second network enabled devices are created in one of a symmetric manner using a secret key or predetermined list shared between the first and second network enabled devices or created in an asymmetric manner. The asymmetric manner includes communicating the subsequent network addresses of the first and second network enabled devices over a back channel separate from the main communication channel.
摘要:
Embodiments of the invention provide for authenticating users of web-based applications by presenting a previously acquired signed digital signature. Examples establish secure user sessions between a client and a user in response to a verification of an identification of the user by the client, the client creating a unique username for the user and unlocking access by the user to a client digital signature for use with a request for service from a third party web server. A secure facilitator session is established between the client and a third party web server, wherein messages exchanged with the unique username and a unique session identification indicia of the secure facilitator session signed by the unlocked digital signature result in executed processes requested by the service identifier data if the messages are validated without the client requiring the user to verify user identification for any message until a secure facilitator session ends.
摘要:
Embodiments of the invention provide for authenticating users of web-based applications by presenting a previously acquired signed digital signature. Examples establish secure user sessions between a client and a user in response to a verification of an identification of the user by the client, the client creating a unique username for the user and unlocking access by the user to a client digital signature for use with a request for service from a third party web server. A secure facilitator session is established between the client and a third party web server, wherein messages exchanged with the unique username and a unique session identification indicia of the secure facilitator session signed by the unlocked digital signature result in executed processes requested by the service identifier data if the messages are validated without the client requiring the user to verify user identification for any message until a secure facilitator session ends.
摘要:
A mechanism is provided for establishing a shared secret-key for secure communication between nodes in a wireless network. A first node in the wireless network provides a spreading code to a second node of the wireless network. The second node provides a first input for the key establishment to the first node using communication encoded with the spreading code. Responsive to obtaining the first input from the second node, the first node provides a second input for the key establishment to the second node using communication encoded with the spreading code. Then, the first node and the second node establish the shared secret-key using the first input and the second input.