Abstract:
In some implementations, a computing device can generate user input correction suggestions based on the user's context. For example, the user's context can include content that the user has open or has recently opened on the computing device or another computing device. For example, when the user opens an item of content, the computing device can generate a context dictionary that includes words, phrases, etc., that describe the opened content. When the user provides input (e.g., text, speech, etc.) the computing device can use the context dictionary to generate input correction suggestions. The computing device can synchronize the context dictionary with other computing devices that the user may be using so that the user's context on one device can be used by another device to generate input correction suggestions.
Abstract:
The present disclosure generally relates to text correction and generating text correction models. In an example process for text correction, text input is received. In response to receiving the text input, a text string corresponding to the text input is displayed. The text string is represented by a token sequence. The process determines whether an end of the token sequence corresponds to a text boundary. In accordance with a determination that the end of the token sequence corresponds to a text boundary, the process determines, based on a context state of the token sequence, one or more textual errors at one or more tokens of the token sequence. An error indication for a portion of the text string corresponding to the one or more tokens is displayed.
Abstract:
Systems and processes for multilingual word prediction are provided. In accordance with one example, a method includes, at an electronic device having one or more processors and memory, receiving context information associated with a current word; determining, for each of a plurality of languages, a set of monolingual probabilities based on the context information; determining a set of language weights based on the context information; determining a set of multilingual probabilities based on the respective sets of monolingual probabilities and the set of language weights; and providing a plurality of candidate words based on the set of multilingual probabilities.
Abstract:
Methods and systems which utilize, in one embodiment, automatic language identification, including automatic language identification for dynamic text processing. In at least certain embodiments, automatic language identification can be applied to spellchecking in real time as the user types.
Abstract:
Methods and systems which utilize, in one embodiment, automatic language identification, including automatic language identification for dynamic text processing. In at least certain embodiments, automatic language identification can be applied to spellchecking in real time as the user types.
Abstract:
In some implementations, a computing device can generate user input correction suggestions based on the user's context. For example, the user's context can include content that the user has open or has recently opened on the computing device or another computing device. For example, when the user opens an item of content, the computing device can generate a context dictionary that includes words, phrases, etc., that describe the opened content. When the user provides input (e.g., text, speech, etc.) the computing device can use the context dictionary to generate input correction suggestions. The computing device can synchronize the context dictionary with other computing devices that the user may be using so that the user's context on one device can be used by another device to generate input correction suggestions.
Abstract:
In some implementations, a computing device can generate user input correction suggestions based on the user's context. For example, the user's context can include content that the user has open or has recently opened on the computing device or another computing device. For example, when the user opens an item of content, the computing device can generate a context dictionary that includes words, phrases, etc., that describe the opened content. When the user provides input (e.g., text, speech, etc.) the computing device can use the context dictionary to generate input correction suggestions. The computing device can synchronize the context dictionary with other computing devices that the user may be using so that the user's context on one device can be used by another device to generate input correction suggestions.
Abstract:
In some implementations, a computing device can generate user input correction suggestions based on the user's context. For example, the user's context can include content that the user has open or has recently opened on the computing device or another computing device. For example, when the user opens an item of content, the computing device can generate a context dictionary that includes words, phrases, etc., that describe the opened content. When the user provides input (e.g., text, speech, etc.) the computing device can use the context dictionary to generate input correction suggestions. The computing device can synchronize the context dictionary with other computing devices that the user may be using so that the user's context on one device can be used by another device to generate input correction suggestions.