Abstract:
Techniques and devices for creating an AutoLoop output video include performing postgate operations. The AutoLoop output video is created from a set of frames. After generating the AutoLoop output video based on a plurality of loop parameters and at least a portion of the frames, postgate operations determine one or more dynamism metrics based on a variability metric and a dynamic range metric for a plurality of pixels within the video loop. Postgate operations compare the dynamism metrics to one or more postgate threshold values and reject the video loop based on the comparison of the dynamism metrics to the postgate threshold values.
Abstract:
Embodiments of the present disclosure provide a method and system for sharing information between a first computing device and a second computing device. In the described embodiments, an optical label, such as, for example a QR code, is generated on the first computing device. In embodiments, the optical label is color encoded and displayed in such a way that the optical label is not perceptible to a user. The second computing device may capture the encoded optical label and subject the captured images to a processing technique that decodes the encoded optical label.
Abstract:
Techniques and devices for creating an AutoLoop output video include performing pregate operations. The AutoLoop output video is created from a set of frames. Prior to creating the AutoLoop output video, the set of frames are automatically analyzed to identify one or more image features that are indicative of whether the image content in the set of frames is compatible with creating a video loop. Pregate operations assign one or more pregate scores for the set of frames based on the one or more identified image features, where the pregate scores indicate a compatibility to create the video loop based on the identified image features. Pregate operations automatically determine to create the video loop based on the pregate scores and generate an output video loop based on the loop parameters and at least a portion of the set of frames.
Abstract:
Techniques and devices for creating an AutoLoop output video by adding synthetic camera motion to the AutoLoop output video. The AutoLoop output video is created from a set of frames. After generating the AutoLoop output video based on a plurality of loop parameters and at least a portion of the frames, synthetic camera motion is combined with the AutoLoop output video. The synthetic camera loop is based on the subset of the input frames and exhibits some amount of camera motion for the subset of the input frames. Once the synthetic camera loop is generated, the synthetic camera loop and the video loop is combined to enhance the AutoLoop output video.
Abstract:
Embodiments of the present disclosure provide a method and system for sharing information between a first computing device and a second computing device. In the described embodiments, an optical label, such as, for example a QR code, is generated on the first computing device. In embodiments, the optical label is color encoded and displayed in such a way that the optical label is not perceptible to a user. The second computing device may capture the encoded optical label and subject the captured images to a processing technique that decodes the encoded optical label.
Abstract:
Techniques and devices for creating an AutoLoop output video include identifying optimal loops within short videos or within a series of image. The AutoLoop output video may be automatically created using casually shot, handheld videos, and may include an AutoLoop pipeline that may comprise obtaining an input video, stabilizing the input video, detecting optimal loop parameters and baking out the AutoLoop output video with crossfade and playing back the AutoLoop output video. Video stabilization can include a cascade of video stabilization algorithms including a tripod-direct mode and a tripod-sequential mode. After stabilization, an AutoLoop operation may determine optimal loop parameters. Once optimal loop parameters are determined, a crossfade may be added to smooth out any temporal and spatial discontinuities in the AutoLoop output video.
Abstract:
Techniques and devices for creating an AutoLoop output video include performing postgate operations. The AutoLoop output video is created from a set of frames. After generating the AutoLoop output video based on a plurality of loop parameters and at least a portion of the frames, postgate operations determine one or more dynamism metrics based on a variability metric and a dynamic range metric for a plurality of pixels within the video loop. Postgate operations compare the dynamism metrics to one or more postgate threshold values and reject the video loop based on the comparison of the dynamism metrics to the postgate threshold values.
Abstract:
Techniques and devices for creating an AutoLoop output video include performing pregate operations. The AutoLoop output video is created from a set of frames. Prior to creating the AutoLoop output video, the set of frames are automatically analyzed to identify one or more image features that are indicative of whether the image content in the set of frames is compatible with creating a video loop. Pregate operations assign one or more pregate scores for the set of frames based on the one or more identified image features, where the pregate scores indicate a compatibility to create the video loop based on the identified image features. Pregate operations automatically determine to create the video loop based on the pregate scores and generate an output video loop based on the loop parameters and at least a portion of the set of frames.
Abstract:
Techniques and devices for creating an AutoLoop output video include identifying optimal loops within short videos or within a series of image. The AutoLoop output video may be automatically created using casually shot, handheld videos, and may include an AutoLoop pipeline that may comprise obtaining an input video, stabilizing the input video, detecting optimal loop parameters and baking out the AutoLoop output video with crossfade and playing back the AutoLoop output video. Video stabilization can include a cascade of video stabilization algorithms including a tripod-direct mode and a tripod-sequential mode. After stabilization, an AutoLoop operation may determine optimal loop parameters. Once optimal loop parameters are determined, a crossfade may be added to smooth out any temporal and spatial discontinuities in the AutoLoop output video.
Abstract:
Techniques and devices for creating an AutoLoop output video by adding synthetic camera motion to the AutoLoop output video. The AutoLoop output video is created from a set of frames. After generating the AutoLoop output video based on a plurality of loop parameters and at least a portion of the frames, synthetic camera motion is combined with the AutoLoop output video. The synthetic camera loop is based on the subset of the input frames and exhibits some amount of camera motion for the subset of the input frames. Once the synthetic camera loop is generated, the synthetic camera loop and the video loop is combined to enhance the AutoLoop output video.