SYSTEMS, METHODS, AND APPARATUSES FOR SYSTEMATICALLY DETERMINING AN OPTIMAL APPROACH FOR THE COMPUTER-AIDED DIAGNOSIS OF A PULMONARY EMBOLISM

    公开(公告)号:US20230081305A1

    公开(公告)日:2023-03-16

    申请号:US17944881

    申请日:2022-09-14

    Abstract: Described herein are means for systematically determining an optimal approach for the computer-aided diagnosis of a pulmonary embolism, in the context of processing medical imaging. According to a particular embodiment, there is a system specially configured for diagnosing a Pulmonary Embolism (PE) within new medical images which form no part of the dataset upon which the AI model was trained. Such a system executes operations for receiving a plurality of medical images and processing the plurality of medical images by executing an image-level classification algorithm to determine the presence or absence of a Pulmonary Embolism (PE) within each image via operations including: pre-training an AI model through supervised learning to identify ground truth; fine-tuning the pre-trained AI model specifically for PE diagnosis to generate a pre-trained PE diagnosis and detection AI model; wherein the pre-trained AI model is based on a modified CNN architecture having introduced therein a squeeze and excitation (SE) block enabling the CNN architecture to extract informative features from the plurality of medical images by fusing spatial and channel-wise information; applying the pre-trained PE diagnosis and detection AI model to new medical images to render a prediction as to the presence or absence of the Pulmonary Embolism within the new medical images; and outputting the prediction as a PE diagnosis for a medical patient.

    Systems, methods, and apparatuses for systematically determining an optimal approach for the computer-aided diagnosis of a pulmonary embolism

    公开(公告)号:US12236592B2

    公开(公告)日:2025-02-25

    申请号:US17944881

    申请日:2022-09-14

    Abstract: Described herein are means for systematically determining an optimal approach for the computer-aided diagnosis of a pulmonary embolism, in the context of processing medical imaging. According to a particular embodiment, there is a system specially configured for diagnosing a Pulmonary Embolism (PE) within new medical images which form no part of the dataset upon which the AI model was trained. Such a system executes operations for receiving a plurality of medical images and processing the plurality of medical images by executing an image-level classification algorithm to determine the presence or absence of a Pulmonary Embolism (PE) within each image via operations including: pre-training an AI model through supervised learning to identify ground truth; fine-tuning the pre-trained AI model specifically for PE diagnosis to generate a pre-trained PE diagnosis and detection AI model; wherein the pre-trained AI model is based on a modified CNN architecture having introduced therein a squeeze and excitation (SE) block enabling the CNN architecture to extract informative features from the plurality of medical images by fusing spatial and channel-wise information; applying the pre-trained PE diagnosis and detection AI model to new medical images to render a prediction as to the presence or absence of the Pulmonary Embolism within the new medical images; and outputting the prediction as a PE diagnosis for a medical patient.

Patent Agency Ranking