Kernels and kernel methods for spectral data
    1.
    发明申请
    Kernels and kernel methods for spectral data 有权
    光谱数据的内核和核心方法

    公开(公告)号:US20050228591A1

    公开(公告)日:2005-10-13

    申请号:US10267977

    申请日:2002-10-09

    摘要: Support vector machines are used to classify data contained within a structured dataset such as a plurality of signals generated by a spectral analyzer. The signals are preprocessed to ensure alignment of peaks across the spectra. Similarity measures are constructed to provide a basis for comparison of pairs of samples of the signal. A support vector machine is trained to discriminate between different classes of the samples. to identify the most predictive features within the spectra. In a preferred embodiment feature selection is performed to reduce the number of features that must be considered.

    摘要翻译: 支持向量机用于对包含在结构化数据集中的数据进行分类,例如由频谱分析仪产生的多个信号。 信号被预处理以确保谱峰的峰对准。 构建相似性度量以提供用于比较信号样本对的基础。 训练支持向量机以区分不同类别的样本。 以识别光谱中最具预测性的特征。 在优选实施例中,执行特征选择以减少必须考虑的特征的数量。

    METHOD FOR FEATURE SELECTION IN A SUPPORT VECTOR MACHINE USING FEATURE RANKING
    2.
    发明申请
    METHOD FOR FEATURE SELECTION IN A SUPPORT VECTOR MACHINE USING FEATURE RANKING 失效
    使用特征排序在支持向量机中选择特征的方法

    公开(公告)号:US20080233576A1

    公开(公告)日:2008-09-25

    申请号:US11928784

    申请日:2007-10-30

    摘要: In a pre-processing step prior to training a learning machine, pre-processing includes reducing the quantity of features to be processed using feature selection methods selected from the group consisting of recursive feature elimination (RFE), minimizing the number of non-zero parameters of the system (l0-norm minimization), evaluation of cost function to identify a subset of features that are compatible with constraints imposed by the learning set, unbalanced correlation score, transductive feature selection and single feature using margin-based ranking. The features remaining after feature selection are then used to train a learning machine for purposes of pattern classification, regression, clustering and/or novelty detection.

    摘要翻译: 在训练学习机之前的预处理步骤中,预处理包括使用从递归特征消除(RFE)中选出的特征选择方法来减少要处理的特征量的数量,使非零参数的数量最小化 (1 0 0 - 最小化),评估成本函数以识别与由学习集施加的约束兼容的特征的子集,不平衡相关得分,转换特征选择和单个特征使用 基于边际的排名。 然后,特征选择之后剩余的特征用于训练学习机,用于模式分类,回归,聚类和/或新颖性检测。