摘要:
Support vector machines are used to classify data contained within a structured dataset such as a plurality of signals generated by a spectral analyzer. The signals are preprocessed to ensure alignment of peaks across the spectra. Similarity measures are constructed to provide a basis for comparison of pairs of samples of the signal. A support vector machine is trained to discriminate between different classes of the samples. to identify the most predictive features within the spectra. In a preferred embodiment feature selection is performed to reduce the number of features that must be considered.
摘要:
In a pre-processing step prior to training a learning machine, pre-processing includes reducing the quantity of features to be processed using feature selection methods selected from the group consisting of recursive feature elimination (RFE), minimizing the number of non-zero parameters of the system (l0-norm minimization), evaluation of cost function to identify a subset of features that are compatible with constraints imposed by the learning set, unbalanced correlation score, transductive feature selection and single feature using margin-based ranking. The features remaining after feature selection are then used to train a learning machine for purposes of pattern classification, regression, clustering and/or novelty detection.