Abstract:
Methods, systems, and apparatus, including medium-encoded computer program products, for facilitating editing of generative design geometry of physical structures, include a method including: receiving editable smooth surface(s), e.g., a T-Spline, constructed from a mesh obtained using a generative design process; instantiating a parametric feature recipe to connect the editable smooth surface(s) with input solid(s), wherein the parametric feature recipe includes an operation sequence that (i) converts the editable smooth surface(s) into boundary representation format and (ii) combines the boundary representation formatted smooth surface(s) with the input solid(s) to produce a watertight three dimensional model of an object; modifying the editable smooth surface(s) in response to input, while preventing disconnection of the editable smooth surface(s) from the input solid(s); updating a visualization thereof in a user interface; and performing the operation sequence of the parametric feature recipe to produce the watertight three dimensional model of the object.
Abstract:
Methods, systems, and apparatus, including medium-encoded computer program products, for facilitating editing of generative design geometry of physical structures, include a method including: receiving editable smooth surface(s), e.g., a T-Spline, constructed from a mesh obtained using a generative design process; instantiating a parametric feature recipe to connect the editable smooth surface(s) with input solid(s), wherein the parametric feature recipe includes an operation sequence that (i) converts the editable smooth surface(s) into boundary representation format and (ii) combines the boundary representation formatted smooth surface(s) with the input solid(s) to produce a watertight three dimensional model of an object; modifying the editable smooth surface(s) in response to input, while preventing disconnection of the editable smooth surface(s) from the input solid(s); updating a visualization thereof in a user interface; and performing the operation sequence of the parametric feature recipe to produce the watertight three dimensional model of the object.
Abstract:
Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using data format conversion (e.g., of output(s) from generative design processes) and user interface techniques that facilitate the production of 3D models of physical structures that are readily usable with 2.5-axis subtractive manufacturing, include: modifying smooth curves, which have been fit to contours representing discrete height layers of an object, to facilitate the 2.5-axis subtractive manufacturing; preparing an editable model of the object using a parametric feature history, which includes a sketch feature, to combine extruded versions of the smooth curves to form a 3D model of the object in a boundary representation format; reshaping a subset of the smooth curves responsive to user input with respect to the sketch feature; and replaying the parametric feature history to reconstruct the 3D model of the object, as changed by the user input.
Abstract:
Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using data format conversion (e.g., of output(s) from generative design processes) and user interface techniques that facilitate the production of 3D models of physical structures that are readily usable with 2.5-axis subtractive manufacturing, include: modifying smooth curves, which have been fit to contours representing discrete height layers of an object, to facilitate the 2.5-axis subtractive manufacturing; preparing an editable model of the object using a parametric feature history, which includes a sketch feature, to combine extruded versions of the smooth curves to form a 3D model of the object in a boundary representation format; reshaping a subset of the smooth curves responsive to user input with respect to the sketch feature; and replaying the parametric feature history to reconstruct the 3D model of the object, as changed by the user input.
Abstract:
Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using data format conversion (e.g., of output(s) from generative design processes) and user interface techniques that facilitate the production of 3D models of physical structures that are readily usable with 2.5-axis subtractive manufacturing, include: modifying smooth curves, which have been fit to contours representing discrete height layers of an object, to facilitate the 2.5-axis subtractive manufacturing; preparing an editable model of the object using a parametric feature history, which includes a sketch feature, to combine extruded versions of the smooth curves to form a 3D model of the object in a boundary representation format; reshaping a subset of the smooth curves responsive to user input with respect to the sketch feature; and replaying the parametric feature history to reconstruct the 3D model of the object, as changed by the user input.
Abstract:
Methods, systems, and apparatus, including medium-encoded computer program products, for facilitating editing of generative design geometry of physical structures, include a method including: receiving editable smooth surface(s), e.g., a T-Spline, constructed from a mesh obtained using a generative design process; instantiating a parametric feature recipe to connect the editable smooth surface(s) with input solid(s), wherein the parametric feature recipe includes an operation sequence that (i) converts the editable smooth surface(s) into boundary representation format and (ii) combines the boundary representation formatted smooth surface(s) with the input solid(s) to produce a watertight three dimensional model of an object; modifying the editable smooth surface(s) in response to input, while preventing disconnection of the editable smooth surface(s) from the input solid(s); updating a visualization thereof in a user interface; and performing the operation sequence of the parametric feature recipe to produce the watertight three dimensional model of the object.
Abstract:
A method, system, apparatus, article of manufacture, and computer readable storage medium provide the ability to automatically simulate a wind load. An analytical model is converted into a solid model. A wind flow on the solid model is simulated to determine pressures on structural elements of the solid model. The simulating is repeated until the pressures converge. The pressures are converted to loads on the structural elements. Load cases are generated with equivalent loads on the structural elements.
Abstract:
A method, system, apparatus, article of manufacture, and computer readable storage medium provide the ability to automatically simulate a wind load. An analytical model is converted into a solid model. A wind flow on the solid model is simulated to determine pressures on structural elements of the solid model. The simulating is repeated until the pressures converge. The pressures are converted to loads on the structural elements. Load cases are generated with equivalent loads on the structural elements.