Abstract:
A decoy deployment and retrieval system includes an extensible boom and corresponding cradle or saddle for use in the retrieval of the towed decoy such that, upon retrieval, the extensible boom with its decoy captured in the cradle is retracted into a chamber so that the decoy can be deployed over and over again. In one embodiment, the decoy is both towed by, and controlled over, a fiber optic line in which a load cell is used to detect tension on the line to prevent damage, and a fiber optic rotary joint is utilized along with high voltage slip rings to permit electrical and optical coupling without backlash, fouling or damage to the line.
Abstract:
Recovery of a towed body, in one embodiment in the form of a decoy which is initially stowed in a receptacle or canister and which is allowed to pay out behind an aircraft on a towing cable wrapped around a spindle, is accomplished by snaring or lassoing a portion of the towing cable and by dragging it to a further spindle which is driven so as to cause the lasso and a portion of the towing cable to wind up around the driven spindle. When a sufficient amount of the cable is wound around the driven spindle, the cable end secured to the canister is severed to allow all of the rest of the towing cable to be wound up. In one embodiment, a telescoping saddle or docking cradle is provided which extends from the canister to receive the retracted towed body so that it may be secured to the moving vehicle from whence it can be recovered, refurbished, and redeployed.