Abstract:
An alignment system for sensor or other electrical device filters rate data from gyroscopes and integrates the same to determine an alignment error state that is populated into a direction cosine matrix that pre-rotates measurement from a first electrical device into an estimated coordinate frame to determine a static alignment between first and second electrical devices or sensors. The system may be part of a countermeasure system on an aircraft. A first electrical device may be an inertial navigation system (INS), and a second electrical device may be an inertial measurement unit (IMU). The attitude of the IMU is used to translate the detected threats from the countermeasure system into a common reference frame of the INS.
Abstract:
An alignment system for sensor or other electrical device filters rate data from gyroscopes and integrates the same to determine an alignment error state that is populated into a direction cosine matrix that pre-rotates measurement from a first electrical device into an estimated coordinate frame to determine a static alignment between first and second electrical devices or sensors. The system may be part of a countermeasure system on an aircraft. A first electrical device may be an inertial navigation system (INS), and a second electrical device may be an inertial measurement unit (IMU). The attitude of the IMU is used to translate the detected threats from the countermeasure system into a common reference frame of the INS.
Abstract:
An alignment system for sensor or other electrical device filters rate data from gyroscopes and integrates the same to determine an alignment error state that is populated into a direction cosine matrix that pre-rotates measurement from a first electrical device into an estimated coordinate frame to determine a static alignment between first and second electrical devices or sensors. The system may be part of a countermeasure system on an aircraft. A first electrical device may be an inertial navigation system (INS), and a second electrical device may be an inertial measurement unit (IMU). The attitude of the IMU is used to translate the detected threats from the countermeasure system into a common reference frame of the INS.
Abstract:
A method to slew a gimbal axis in an infrared countermeasures system (IRCM) comprising the steps of driving the motors up to the peak currents allowed by the servo amplifiers, moving the profile generator from firmware to software for design flexibility, forcing high torque by manipulating the angle waveform sent to hardware, measuring friction during acceleration of each slew, providing a dynamic rate limit for receding or advancing angle goals is presented in this application.