Abstract:
The present disclosure provides a back plate for OLED display substrate, and a method for manufacturing the same. The back plate comprises a pixel definition layer comprising a body layer and an interface layer disposed on the surface of the body layer. The interface layer exhibits different lyophilic or lyophobic properties with respect to a functional layer of the OLED depending on the temperature of the interface layer. When the OLED display substrate is manufactured by using the back plate according the present disclosure, the cost can be reduced, and the device yield of the display substrate can be ensured.
Abstract:
Disclosed are a rearview mirror and a method for driving the same, and the rearview mirror includes: an optical adjustor, and a control component in a communication connection with the optical adjustor, where the optical adjustor includes a plurality of reflectivity-adjustable windows, where at least one sub-optical adjustors are arranged in each of plurality of reflectivity-adjustable windows; and the control component is configured to control a reflectivity in each of plurality of reflectivity-adjustable windows, so that the rearview mirror can adjust the each of plurality of reflectivity-adjustable windows automatically according to the intensity of light rays incident onto the optical adjustor to thereby control the intensity of the light rays reflected into human eyes.
Abstract:
An organic electroluminescent device and a process for preparing the organic electroluminescent device, wherein the organic electroluminescent device includes a substrate, on which pixel dividing walls are provided, said pixel dividing walls are composed of at least two stacked organic material dividing layers, and adjacent organic material dividing layers have different wettability. A process for preparing the organic electroluminescent device, including depositing and patternizing a bottom electrode; preparing two or more layers of pixel dividing walls; preparing a functional layer by deposition; and depositing sequentially a cathode, a protective layer and a sealing layer. The pixel dividing wall of the organic electroluminescent device are composed by stacking at least two organic material dividing layers, wherein the wettability of the adjacent organic material dividing layers is different, so as to ensure that a functional film with an even thickness is formed after ink droplets printed to a pixel region are dried. The organic material dividing layers have strong adhesion, thereby ensuring the good performance of the device.
Abstract:
A display substrate includes a substrate, a planarization layer disposed on a side of the substrate, and a plurality of light-emitting layers disposed on a side of the planarization layer away from the substrate. The planarization layer includes a plurality of first portions and a second portion, a first portion is disposed in a sub-pixel region, and the second portion is located in a gap region between a plurality of sub-pixel regions; side surfaces of the plurality of first portions and side surfaces of the second portion have spacings therebetween to form a plurality of annular depressions, and an annular depression surrounds a first portion. A light-emitting layer covers the first portion of the planarization layer.
Abstract:
A display panel is provided. A pixel defining layer of the display panel includes a first defining layer and a second defining layer, wherein the first defining layer includes a first base body and first magnets dispersed in the first base body, and the second defining layer includes a second base body and second magnets dispersed in the second base body; both the first base body and the second base body are hydrophobic and elastic; and a side face of the first base body perpendicular to a bearing surface of the substrate and a side face of the second base body perpendicular to the bearing surface of the substrate being in contact with each other.
Abstract:
A method for manufacturing a light-emitting layer, an electroluminescent device and a display device are provided, and the method includes: providing a base substrate formed with a pixel definition layer, so that a plurality of barrier wall structures of the pixel definition layer define a plurality of pixel regions that include pixel regions arranged along a first direction and pixel regions arranged along a second direction; forming a solution layer on the base substrate formed with the pixel definition layer, so that the solution layer includes a solution formed in the plurality of pixel regions and a solution formed on first barrier wall structures and the solution in the pixel regions does not blend with the solution on the first barrier wall structures; performing a drying process on the solution layer so that the solution in each pixel region forms a light-emitting structure to obtain a light-emitting layer.
Abstract:
A printing head and an inkjet printing device are provided. The printing head includes a base, and N printing components on the base, where N≥2. Each of the printing components includes a diversion groove group and a plurality of nozzles. The diversion groove group includes a plurality of diversion grooves, the plurality of diversion grooves and the plurality of nozzles are in one-to-one correspondence, and a first end of each of the diversion grooves is connected to a corresponding nozzle. The center points of all the nozzles are on the same reference line, the opening faces of all the nozzles are in the bottom surface of the base, any two of the diversion groove groups of the N printing components are in different orientations of the reference line, and any two adjacent nozzles respectively belong to two different printing components, which reduces the turbulence between the nozzles.
Abstract:
Provided is a display panel. The display panel includes: a substrate; a plurality of pixels, disposed on a side of the substrate, wherein each of the plurality of pixels includes a plurality of sub-pixels of different colors; a pixel definition layer, disposed on the side of the substrate, wherein the pixel definition layer includes a plurality of first openings sequentially arranged in a first direction and a plurality of second openings disposed within the plurality of first openings and sequentially arranged in a second direction; a drainage layer, disposed on a side, distal from the substrate, of the pixel definition layer, wherein the drainage layer includes a plurality of drainage portions spaced apart from each other.
Abstract:
The present disclosure provides a back plate for OLED display substrate, and a method for manufacturing the same. The back plate comprises a pixel definition layer comprising a body layer and an interface layer disposed on the surface of the body layer. The interface layer exhibits different lyophilic or lyophobic properties with respect to a functional layer of the OLED depending on the temperature of the interface layer. When the OLED display substrate is manufactured by using the back plate according the present disclosure, the cost can be reduced, and the device yield of the display substrate can be ensured.
Abstract:
The disclosure relates to a pixel element, a method for driving the same, a display panel, and a display device. The pixel element includes at least two sub-pixels, each of which includes a first electrode, a first light emitting layer, a second electrode, a second light emitting layer, and a third electrode arranged in that order, wherein there is at least one sub-pixel which includes a first light emitting layer and a second light emitting layer with different emission colors; and a total number of emission colors of all light emitting layers in the at least two sub-pixels is at least three.