Abstract:
A display substrate and a display apparatus are provided. The display substrate includes: a base, and a plurality of sub-pixel regions arranged in a matrix on the base. Each sub-pixel region includes a display region and a transparent region; and the boundary of the transparent region in each sub-pixel region is non-linear.
Abstract:
A display panel, a method for fabricating the same, and a display device are disclosed, where the display panel includes: a base substrate, sub-pixel units in at least two colors on the base substrate, and an anti-reflection layer on a side of the sub-pixel units away from the base substrate, wherein the anti-reflection layer includes anti-reflection components arranged in an array, which correspond to the sub-pixel units in a one-to-one manner, and are configured to alleviate reflected light in the same colors as the corresponding sub-pixel units, and sub-pixel units in different colors correspond to different anti-reflection components.
Abstract:
A light-emitting substrate and a method for manufacturing the light-emitting substrate are provided. In the light-emitting substrate, each of a plurality of pixel units includes an anode and a light-emitting layer sequentially provided on a base substrate, the light-emitting substrate further includes a cathode layer covering the plurality of pixel units and a region which is between the adjacent ones of the pixel units, an auxiliary electrode is provided below the cathode layer, the auxiliary electrode includes a plurality of auxiliary electrode strips which include a plurality of first auxiliary electrode strips extending along an extension direction of each pixel unit row and/or a plurality of second auxiliary electrode strips extending along an extension direction of each pixel unit column, and at least a part of the plurality of auxiliary electrode strips is electrically connected to the cathode layer.
Abstract:
The present disclosure provides an OLED display panel and an OLED display device, and belongs to the field of display technology. The OLED display panel of the present disclosure includes a base substrate and a display cover disposed opposite to each other; a polarizing layer disposed between the base substrate and the display cover; a light extraction layer disposed between the base substrate and the display cover; the OLED display panel is provided with a light exit surface, and the light extraction layer is closer to the light exit surface than the polarizing layer.
Abstract:
An organic light emitting diode display panel, a manufacturing method thereof, and a display device are disclosed. The organic light emitting diode display panel includes: a base substrate; a light emitting layer on the base substrate, a spectral width at 10%-15% of a maximum spectral intensity of an emission spectrum of the light emitting layer is not less than 200 nm, and a yellow-green wave band of the emission spectrum includes at least one peak located between 550 nm-562 nm.
Abstract:
A manufacturing method of a display substrate, a display substrate and a display device are disclosed. In the manufacturing method of the display substrate, the display substrate includes a pixel region, the pixel region includes a plurality of pixel units arranged in an array, and each of the pixel units includes an active display region and a peripheral region located around the active display region. The manufacturing method includes: forming a plurality of spacers in the peripheral region through an ink-jet printing process, and each of the plurality of spacers includes an adhesive material and at least one kind of nanoparticles doped in the adhesive material.
Abstract:
An electroluminescent device and a display apparatus, for improving the efficiency and prolonging the service life of the electroluminescent device. The electroluminescent device comprises: an anode comprising a reflective material; a cathode arranged opposite to the anode and comprising a transflective material; n light-emitting functional layers laminated between the anode and the cathode, wherein n is an integer greater than 1; and each light-emitting functional layer comprises a light-emitting layer and an electron transport layer located at the side of the light-emitting layer close to the cathode, wherein the thickness of the electron transport layer in the light-emitting functional layer closest to the cathode is greater than that of the electron transport layers in the remaining light-emitting functional layers; and (n−1) charge generation layers located between two adjacent light-emitting functional layers.
Abstract:
A display substrate, a manufacturing method thereof, and a display device are disclosed. The display substrate includes a base substrate; a pixel defining layer on the base substrate, the pixel defining layer includes a plurality of openings, the pixel defining layer includes a first pixel defining layer, a conductive layer, and a second pixel defining layer which are stacked, in the pixel defining layer in at least a peripheral region of the display substrate, an orthographic projection of the conductive layer on the base substrate completely falls within an orthographic projection of the second pixel defining layer on the base substrate; and an electroluminescent unit including a transparent electrode the transparent electrode is electrically connected with the conductive layer in the pixel defining layer in at least the peripheral region of the display substrate.
Abstract:
An OLED packaging method, a packaged structure, and a display device. The packaging method comprises forming at least one group of films on an OLED to be packaged. Each group of films comprises three films, and an intermediate film in each group of films is an intermediate inorganic-organic hybrid layer. The packaged structure comprises at least one group of films; the at least one group of films encapsulates an OLED to be packaged. Each group of films comprises three films, and an intermediate film in each group of films is an intermediate inorganic-organic hybrid layer. The intermediate inorganic-organic hybrid layer is arranged as an intermediate film in each group of films, and connects an upper film and a lower film in each group of films, so that adhesion between the upper film and the lower film in each group of films is effectively improved, and stripping of the upper and lower films is avoided.
Abstract:
An organic light-emitting diode (OLED) display panel and a manufacturing method thereof are disclosed. The manufacturing method includes: providing a first substrate (1) and a second substrate (2), in which the first substrate (1) is provided with an OLED layer (3); coating a first sealant (4) on a surface of the OLED layer (3) of the first substrate (1); coating a second sealant (5) on a surface of the second substrate (2) and coating a third sealant (6) outside the second sealant (2) on the second substrate (2), in which the first sealant (4) has a viscosity less than that of the second sealant (5); and pressing the first substrate (1) and the second substrate (2) together and performing curing to allow the second sealant (5) to cover the first sealant(4) and fill a gap among the first substrate (1), the second substrate (2) and the third sealant (6). The manufacturing method can reduce the tension of a contact surface between the sealant and an OLED in the curing process, reduce the damage to the OLED, and ensure that a sealing structure of the OLED has good water resistance.