METHOD AND APPARATUS FOR TRAINING LONGITUDINAL FEDERATED LEARNING MODEL

    公开(公告)号:US20230074417A1

    公开(公告)日:2023-03-09

    申请号:US18055149

    申请日:2022-11-14

    Abstract: A method for training a longitudinal federated learning model is provided, and is applied to a first participant device. The first participant device includes label data. The longitudinal federated learning model includes a first bottom layer sub-model, an interaction layer sub-model, a top layer sub-model based on a Lipschitz neural network and a second bottom layer sub-model in a second participant device. First bottom layer output data of the first participant device and second bottom layer output data sent by the second participant device are obtained. The first bottom layer output data and the second bottom layer output data are input into an interaction layer sub-model to obtain interaction layer output data. Top layer output data is obtained based on the interaction layer output data and the top layer sub-model. The longitudinal federated learning model is trained according to the top layer output data and the label data.

    FEDERATED LEARNING METHOD AND SYSTEM, ELECTRONIC DEVICE, AND STORAGE MEDIUM

    公开(公告)号:US20230083116A1

    公开(公告)日:2023-03-16

    申请号:US17988264

    申请日:2022-11-16

    Abstract: A federated learning method and system, an electronic device, and a storage medium, which relate to a field of artificial intelligence, in particular to fields of computer vision and deep learning technologies. The method includes: performing a plurality of rounds of training until a training end condition is met, to obtain a trained global model; and publishing the trained global model to a plurality of devices. Each of the plurality of rounds of training includes: transmitting a current global model to at least some devices in the plurality of devices; receiving trained parameters for the current global model from the at least some devices; performing an aggregation on the received parameters to obtain a current aggregation model; and adjusting the current aggregation model based on a globally shared dataset, and updating the adjusted aggregation model as a new current global model for a next round of training.

    METHOD FOR MULTI-TASK SCHEDULING, DEVICE AND STORAGE MEDIUM

    公开(公告)号:US20220374775A1

    公开(公告)日:2022-11-24

    申请号:US17867516

    申请日:2022-07-18

    Abstract: A method for multi-task scheduling, a device and a storage medium are provided. The method may include: initializing a list of candidate scheduling schemes, the candidate scheduling scheme being used to allocate a terminal device for training to each machine learning task in a plurality of machine learning tasks; perturbing, for each candidate scheduling scheme in the list of candidate scheduling schemes, the candidate scheduling scheme to generate a new scheduling scheme; determining whether to replace the candidate scheduling scheme with the new scheduling scheme based on a fitness value of the candidate scheduling scheme and a fitness value of the new scheduling scheme, to generate a new scheduling scheme list; and determining a target scheduling scheme, based on the fitness value of each new scheduling scheme in the new scheduling scheme list.

    MODEL TRAINING CONTROL METHOD BASED ON ASYNCHRONOUS FEDERATED LEARNING, ELECTRONIC DEVICE AND STORAGE MEDIUM

    公开(公告)号:US20240086717A1

    公开(公告)日:2024-03-14

    申请号:US18098514

    申请日:2023-01-18

    CPC classification number: G06N3/098

    Abstract: Disclosed is a model training control method based on asynchronous federated learning, an electronic device and a storage medium, relating to data processing technical field, and especially to technical fields such as edge computing and machine learning. The method includes: sending a first parameter of a first global model to a plurality of edge devices; receiving a second parameter of a second global model returned by a first edge device of plurality of edge devices, the second global model being a global model obtained after the first edge device trains the first global model according to a local data set; and sending a third parameter of a third global model to a second edge device of the plurality of edge devices in a case of the third global model is obtained based on aggregation of at least one second global model.

    TRAFFIC CLASSIFICATION AND TRAINING OF TRAFFIC CLASSIFIER

    公开(公告)号:US20220385583A1

    公开(公告)日:2022-12-01

    申请号:US17817594

    申请日:2022-08-04

    Abstract: A traffic classification method and apparatus, a training method and apparatus, a device and a medium are provided. An implementation is: performing a preprocessing operation on each characteristic of one or more characteristics of an object to be classified; and inputting the one or more characteristics of the object to be classified into a traffic classifier to determine a traffic type of the object to be classified. The preprocessing operation includes at least one of: setting, in response to determining that a characteristic value of the characteristic is invalid data, the characteristic value to a null value; converting, in response to determining that the characteristic is a non-numeric characteristic, the characteristic value of the characteristic to an integer value, and normalizing, in response to determining that the characteristic is a non-port characteristic, the characteristic value of the characteristic.

Patent Agency Ranking