Abstract:
A method for calculating torque through a rotor mast of a propulsion system of a tiltrotor aircraft includes receiving the torque being applied through a quill shaft of the rotorcraft. The quill shaft is located between a fixed gearbox and a spindle gearbox, and the spindle gearbox is rotatable about a conversion access. The torque through the rotor mast is determined by using the torque through the quill shaft and the efficiency loss value between the quill shaft and the rotor mast.
Abstract:
A quill shaft is configured for transferring torque and accepting misalignments between a fixed gearbox and a rotatable spindle gearbox in a propulsion system of a tiltrotor aircraft, the quill shaft includes a first splined portion configured for coupling to an output gear of the fixed gearbox, and a second splined portion configured for coupling to an input gear of the spindle gearbox. The spindle gearbox includes a rotor mast associated therewith, the spindle gearbox being rotatable so that the tiltrotor aircraft can selectively operate in a helicopter mode and airplane mode.
Abstract:
A system is provided in one example embodiment and may include a first reservoir for a lubricant; a second reservoir for the lubricant, wherein the first reservoir and the second reservoir are interconnected; a first pumping element to pump the lubricant from the first reservoir at a first flow rate; a second pumping element to pump the lubricant at a second flow rate, wherein the first flow rate and the second flow rate are different; and a gearbox coupled to the first pumping element and the second pumping element. The first reservoir may have a larger volume than the second reservoir and the first flow rate may be higher than the second flow rate.
Abstract:
A drive system for a tiltrotor aircraft includes a first gearbox rotatably mounted to the airframe and rotatable about a longitudinal axis to operate the tiltrotor aircraft between helicopter and airplane modes. A second gearbox extends generally normal to the longitudinal axis of the first gearbox. A common shaft, rotatable about the longitudinal axis, transfers torque from an output gear of the second gearbox to an input gear of the first gearbox. A support assembly couples the second gearbox to the airframe and includes a fixed joint proximate the longitudinal axis, a first directional reacting joint remote from the longitudinal axis providing a first radial growth degree of freedom to the second gearbox and a second directional reacting joint remote from the longitudinal axis providing a second radial growth degree of freedom to the second gearbox that is not parallel with the first radial growth degree of freedom.
Abstract:
A quill shaft is configured for transferring torque and accepting misalignments between a fixed gearbox and a rotatable spindle gearbox in a propulsion system of a tiltrotor aircraft, the quill shaft includes a first splined portion configured for coupling to an output gear of the fixed gearbox, and a second splined portion configured for coupling to an input gear of the spindle gearbox. The spindle gearbox includes a rotor mast associated therewith, the spindle gearbox being rotatable so that the tiltrotor aircraft can selectively operate in a helicopter mode and airplane mode.
Abstract:
A rotor system for tilt rotor aircraft comprises an engine disposed at a first fixed location on a wing member; a prop-rotor pylon mechanically coupled to the engine along a drive path, and a gearbox disposed in the drive path. The prop-rotor pylon is rotatably mounted on a spindle, and the prop-rotor pylon is configured to selectively rotate about a rotational axis of the spindle between a vertical position and a horizontal position. The gearbox comprises a rotational axis aligned with the rotational axis of the spindle.
Abstract:
A system is provided in one example embodiment and may include a first reservoir for a lubricant; a second reservoir for the lubricant, wherein the first reservoir and the second reservoir are interconnected; a first pumping element to pump the lubricant from the first reservoir at a first flow rate; a second pumping element to pump the lubricant at a second flow rate, wherein the first flow rate and the second flow rate are different; and a gearbox coupled to the first pumping element and the second pumping element. The first reservoir may have a larger volume than the second reservoir and the first flow rate may be higher than the second flow rate.
Abstract:
A method for calculating torque through a rotor mast of a propulsion system of a tiltrotor aircraft includes receiving the torque being applied through a quill shaft of the rotorcraft. The quill shaft is located between a fixed gearbox and a spindle gearbox, and the spindle gearbox is rotatable about a conversion access. The torque through the rotor mast is determined by using the torque through the quill shaft and the efficiency loss value between the quill shaft and the rotor mast.
Abstract:
A method for calculating torque through a rotor mast of a propulsion system of a tiltrotor aircraft includes receiving the torque being applied through a quill shaft of the rotorcraft. The quill shaft is located between a fixed gearbox and a spindle gearbox, and the spindle gearbox is rotatable about a conversion access. The torque through the rotor mast is determined by using the torque through the quill shaft and the efficiency loss value between the quill shaft and the rotor mast.
Abstract:
A support assembly for coupling a first gearbox to an airframe of an aircraft. The first gearbox has an output gear operable to transfer torque to an input gear of a second gearbox via a common shaft rotatable about a longitudinal axis. The support assembly includes a fixed joint proximate the longitudinal axis. A first directional reacting joint remote from the longitudinal axis provides a first radial growth degree of freedom to the first gearbox relative to the longitudinal axis. A second directional reacting joint remote from the longitudinal axis provides a second radial growth degree of freedom to the first gearbox relative to the longitudinal axis. The first radial growth degree of freedom is not parallel with the second radial growth degree of freedom such that the support assembly maintains the output gear of the first gearbox in substantial collinear alignment with the input gear of the second gearbox.