Abstract:
A method of conducting an engine power assurance check includes performing a first engine power assurance check wherein the first engine power assurance check is judged as passing or failing based on power performance values calculated assuming the presence of a substantially clogged or blocked inlet barrier filter and in response to a fail result of the first engine power assurance check, performing a second engine power assurance check wherein the second power assurance check is judged as passing or failing based on power performance values calculated assuming at least one of no inlet barrier filter being installed and an open bypass of an installed inlet barrier filter.
Abstract:
A fluid connection system for fluidly connecting a pair of fluid reservoirs, such as fuel cells, includes a bellowed portion surrounding a connection portion through which fluid can flow between the two reservoirs. The bellowed portion allows for relative movement between the two reservoirs without breaking the fluid-tight connection between the two reservoirs. Also, a guard member surrounds at least some of the outer periphery of the bellowed portion. The guard member serves as a shield around the fluid-tight connection and bellowed portion, and thereby helps prevent damage to the fluid-tight connection in the event of a crash or hard landing.
Abstract:
A rotorcraft has a low density altitude flight mode and a high density altitude flight mode. The rotorcraft includes a turboshaft engine forming a gas path in sequence through an air inlet section, a compressor section, a combustor section, a turbine section and an exhaust section. A drive system is coupled to the engine and is operable responsive to rotation of at least a portion of the turbine section. A rotor is coupled to the drive system and is operable to receive torque and rotational energy therefrom. A fuel injection system supplies fuel to the combustor section. An oxidizer injection system and a coolant injection system are used to selectively inject an oxidizer and a coolant into the gas path when it is desired to operate the rotorcraft in the high density altitude flight mode, thereby increasing the altitude density ceiling of the rotorcraft for maneuvers including takeoffs and landings.
Abstract:
A rotorcraft includes a fuselage having a fuel tank receiving assembly with a fuel tank positioned therein. The fuel tank including a plurality of interconnected fuel bags operable to contain liquid fuel. A network of straps is disposed about the fuel tank forming a restraint assembly. The network of straps includes at least one perimeter strap extending at least partially about at least two fuel bags and at least one surrounding strap extending at least partially about the at least two fuel bags. The at least one perimeter strap has at least two intersections with the at least one surrounding strap.
Abstract:
A rotorcraft has a low density altitude flight mode and a high density altitude flight mode. The rotorcraft includes a turboshaft engine forming a gas path in sequence through an air inlet section, a compressor section, a combustor section, a turbine section and an exhaust section. A drive system is coupled to the engine and is operable responsive to rotation of at least a portion of the turbine section. A rotor is coupled to the drive system and is operable to receive torque and rotational energy therefrom. A fuel injection system supplies fuel to the combustor section. An oxidizer injection system and a coolant injection system are used to selectively inject an oxidizer and a coolant into the gas path when it is desired to operate the rotorcraft in the high density altitude flight mode, thereby increasing the altitude density ceiling of the rotorcraft for maneuvers including takeoffs and landings.
Abstract:
A rotorcraft includes a fuselage having a fuel tank receiving assembly with a fuel tank positioned therein. The fuel tank including a plurality of interconnected fuel bags operable to contain liquid fuel. A network of straps is disposed about the fuel tank forming a restraint assembly. The network of straps includes at least one perimeter strap extending at least partially about at least two fuel bags and at least one surrounding strap extending at least partially about the at least two fuel bags. The at least one perimeter strap has at least two intersections with the at least one surrounding strap.
Abstract:
The present invention includes an apparatus for preventing aircraft rollover upon a water landing comprising: a deployable first and/or second boom affixed by a first end to the aircraft and capable of deployment substantially perpendicular to a longitudinal axis of the aircraft; and a first and/or second air bladder attached to a second end of the first and/or second boom, wherein the first and/or second air bladders are configured to inflate when an aircraft lands in the water, wherein deployment of the first and second boom and air bladder prevents aircraft rollover upon water landing; or a deployable keel affixed by a first end to the aircraft and capable of deployment substantially perpendicular to a longitudinal axis and opposite a rotor of the aircraft upon a water landing, wherein the keel is sized to prevent aircraft rollover upon deployment; or both.
Abstract:
A fluid connection system for fluidly connecting a pair of fluid reservoirs, such as fuel cells, includes a bellowed portion surrounding a connection portion through which fluid can flow between the two reservoirs. The bellowed portion allows for relative movement between the two reservoirs without breaking the fluid-tight connection between the two reservoirs. Also, a guard member surrounds at least some of the outer periphery of the bellowed portion. The guard member serves as a shield around the fluid-tight connection and bellowed portion, and thereby helps prevent damage to the fluid-tight connection in the event of a crash or hard landing.
Abstract:
A method of conducting an engine power assurance check includes performing a first engine power assurance check wherein the first engine power assurance check is judged as passing or failing based on power performance values calculated assuming the presence of a substantially clogged or blocked inlet barrier filter and in response to a fail result of the first engine power assurance check, performing a second engine power assurance check wherein the second power assurance check is judged as passing or failing based on power performance values calculated assuming at least one of no inlet barrier filter being installed and an open bypass of an installed inlet barrier filter.