摘要:
This disclosure relates to a method of measuring a glucose concentration metric or a glucose metric in a patient by contacting an implantable glucose-sensing device with a test sample, which may be in the patient, under conditions that permit a sugar-binding molecule and a functionalized polymer or nano-particle ligand present throughout the matrix of a hydrogel to interact in a glucose-dependent manner to produce an optical signal resulting from quenching of a first fluorophore linked to the ligand or sugar-binding molecule and having a fluorescent emission spectrum quenched upon binding or release of glucose. Next the first fluorophore may be excited with light of a certain wavelength. Then at least one wavelength of light in the glucose-dependent optical signal from the fluorophore may be detected with a detector to produce a detected light signal, which may be processed to produce a glucose metric, such as a glucose concentration metric.
摘要:
This disclosure relates to systems, devices, and methods of sensing an analyte. An implantable sensor may be contacted with a test sample under conditions that permit a binding protein and a ligand of the sensor to interact in an analyte-dependent manner to produce an analyte-dependent signal, and (b) detecting the analyte-dependent signal with a detector. A binding protein may reversibly bind an analyte and/or a ligand. A binding protein may have a higher binding affinity for an analyte than for a ligand. A binding protein and a ligand may each include a fluorophore, the absorption and/or emission properties of which may change in an analyte-dependent manner. A binding protein and/or a ligand may be bound to an active or inactive substrate. Some embodiments of systems, devices, and methods may be practiced in vitro, in situ, and/or in vivo. Systems and/or devices of the disclosure may be configured to be wearable.
摘要:
This disclosure relates to systems, devices, and methods of sensing an analyte. An implantable sensor may be contacted with a test sample under conditions that permit a binding protein and a ligand of the sensor to interact in an analyte-dependent manner to produce an analyte-dependent signal, and (b) detecting the analyte-dependent signal with a detector. A binding protein may reversibly bind an analyte and/or a ligand. A binding protein may have a higher binding affinity for an analyte than for a ligand. A binding protein and a ligand may each include a fluorophore, the absorption and/or emission properties of which may change in an analyte-dependent manner. A binding protein and/or a ligand may be bound to an active or inactive substrate. Some embodiments of systems, devices, and methods may be practiced in vitro, in situ, and/or in vivo. Systems and/or devices of the disclosure may be configured to be wearable.