摘要:
To form an audio signal, frequency components of the audio signal which are allotted to a first subband are formed by means of a subband decoder using supplied fundamental period values which respectively indicate a fundamental period for the audio signal. Frequency components of the audio signal which are allotted to a second subband are formed by exciting an audio synthesis filter using an excitation signal which is specific to the second subband. To produce this excitation signal, an excitation signal generator derives a fundamental period parameter from the fundamental period values. The fundamental period parameter is used by the excitation signal generator to form pulses with a pulse shape which is dependent on the fundamental period parameter at an interval of time which is determined by the fundamental period parameter and to mix them with a noise signal.
摘要:
According to the invention, an excitation signal is generated as a result of sampled excitation values in order to excite an audio synthesis filter, the generated sampled excitation values being continuously stored in an adaptive codebook. A noise generator is provided which continuously generates random sampled values. A sequence of the stored sampled excitation values is selected from the adaptive codebook based on a fed audio fundamental frequency parameter by means of which a time gap between the sequence that is to be selected and the actual time reference is predefined. The excitation signal is generated by mixing the selected sequence with a random sequence encompassing actual random sampled valued of the noise generator.
摘要:
A method for the artificial extension of the bandwidth of speech signals involves: a) Provision of a wideband input speech signal (swbi(k)); b) Determination of the signal components (seb(k)) of the wideband input speech signal (swbi(k)) required for the bandwidth extension from an extension band from the wideband input speech signal (swbi(k)); c) Determination of the temporal envelopes of the signal components (seb(k)) determined for the bandwidth extension; d) Determination of the spectral envelopes of the signal components (seb(k)) determined for bandwidth extension; e) Encoding of the information for the temporal envelopes and the spectral envelopes, and provision of the encoded information by carrying out the extension of the bandwidth; f) Decoding of the encoded information and generation of the temporal envelopes and the spectral envelopes from the encoded information for the production of a bandwidth-extended output speech signal (swbo(k)).
摘要:
A method for the artificial extension of the bandwidth of speech signals involves: a) Provision of a wideband input speech signal (swbi(k)); b) Determination of the signal components (seb(k)) of the wideband input speech signal (swbi(k)) required for the bandwidth extension from an extension band from the wideband input speech signal (swbi(k)); c) Determination of the temporal envelopes of the signal components (seb(k)) determined for the bandwidth extension; d) Determination of the spectral envelopes of the signal components (seb(k)) determined for bandwidth extension; e) Encoding of the information for the temporal envelopes and the spectral envelopes, and provision of the encoded information by carrying out the extension of the bandwidth; f) Decoding of the encoded information and generation of the temporal envelopes and the spectral envelopes from the encoded information for the production of a bandwidth-extended output speech signal (swbo(k)).
摘要:
To form an audio signal, frequency components of the audio signal which are allotted to a first subband are formed by means of a subband decoder using supplied fundamental period values which respectively indicate a fundamental period for the audio signal. Frequency components of the audio signal which are allotted to a second subband are formed by exciting an audio synthesis filter using an excitation signal which is specific to the second subband. To produce this excitation signal, an excitation signal generator derives a fundamental period parameter from the fundamental period values. The fundamental period parameter is used by the excitation signal generator to form pulses with a pulse shape which is dependent on the fundamental period parameter at an interval of time which is determined by the fundamental period parameter and to mix them with a noise signal.
摘要:
According to the invention, an excitation signal is generated as a result of sampled excitation values in order to excite an audio synthesis filter, the generated sampled excitation values being continuously stored in an adaptive codebook. A noise generator is provided which continuously generates random sampled values. A sequence of the stored sampled excitation values is selected from the adaptive codebook based on a fed audio fundamental frequency parameter by means of which a time gap between the sequence that is to be selected and the actual time reference is predefined. The excitation signal is generated by mixing the selected sequence with a random sequence encompassing actual random sampled valued of the noise generator.
摘要:
Representations of spatial audio scenes using higher-order Ambisonics HOA technology typically require a large number of coefficients per time instant. This data rate is too high for most practical applications that require real-time transmission of audio signals. According to the invention, the compression is carried out in spatial domain instead of HOA domain. The (N+1)2 input HOA coefficients are transformed into (N+1)2 equivalent signals in spatial domain, and the resulting (N+1)2 time-domain signals are input to a bank of parallel perceptual codecs. At decoder side, the individual spatial-domain signals are decoded, and the spatial-domain coefficients are transformed back into HOA domain in order to recover the original HOA representation.
摘要:
Higher-order Ambisonics HOA is a representation of spatial sound fields that facilitates capturing, manipulating, recording, transmission and playback of complex audio scenes with superior spatial resolution, both in 2D and 3D. The sound field is approximated at and around a reference point in space by a Fourier-Bessel series. The invention uses space warping for modifying the spatial content and/or the reproduction of sound-field information that has been captured or produced as a higher-order Ambisonics representation. Different warping characteristics are feasible for 2D and 3D sound fields. The warping is performed in space domain without performing scene analysis or decomposition. Input HOA coefficients with a given order are decoded to the weights or input signals of regularly positioned (virtual) loudspeakers.
摘要:
At the time of encoding audio content, the finally required data rate for delivery to the customer may be unknown. A data format is disclosed that is optimized for serving as Intermediate Format for efficient and fast recoding, to obtain one or more standard complying lossy encoded data streams with flexible data rates. Encoding can be performed in two steps that are inter-coordinated for cooperating, but may be locally and/or temporally separate. Between the partial encoders encoding parameters and/or auxiliary data are transmitted in a separate parameter enhancement layer, which complements a lossy data stream and can be used by the second encoder or transcoder for fast and computationally efficient implementation of the second encoding step. An additional lossless enhancement layer allows lossless reconstruction.
摘要:
In a method for detecting a leak in a double pipe, a medium located in an intermediate chamber between the interior and exterior pipe is moved toward a first end of the pipe, whereupon the medium flows in from the second end. On the first end the medium is examined for any leakage of a characteristic material, upon the detection of which a leakage signal is generated and a location of the leakage is calculated based on the transport time of the characteristic material from the leakage to the first end and on the mass flow of the medium. A corresponding device contains a conveyor unit for moving the medium through the intermediate chamber. A material sensor is disposed at the first end for examining the medium for the characteristic material. A control and analysis unit is provided for generating a leakage signal and calculating the location of the leakage.