摘要:
An audio encoder has a first information sink oriented encoding branch, a second information source or SNR oriented encoding branch, and a switch for switching between the first encoding branch and the second encoding branch, wherein the second encoding branch has a converter into a specific domain different from the spectral domain, and wherein the second encoding branch furthermore has a specific domain coding branch, and a specific spectral domain coding branch, and an additional switch for switching between the specific domain coding branch and the specific spectral domain coding branch. An audio decoder has a first domain decoder, a second domain decoder for decoding a signal, and a third domain decoder and two cascaded switches for switching between the decoders.
摘要:
An apparatus for encoding includes a first domain converter, a switchable bypass, a second domain converter, a first processor and a second processor to obtain an encoded audio signal having different signal portions represented by coded data in different domains, which have been coded by different coding algorithms. Corresponding decoding stages in the decoder together with a bypass for bypassing a domain converter allow the generation of a decoded audio signal with high quality and low bit rate.
摘要:
An apparatus for encoding includes a first domain converter, a switchable bypass, a second domain converter, a first processor and a second processor to obtain an encoded audio signal having different signal portions represented by coded data in different domains, which have been coded by different coding algorithms. Corresponding decoding stages in the decoder together with a bypass for bypassing a domain converter allow the generation of a decoded audio signal with high quality and low bit rate.
摘要:
An audio encoder has a first information sink oriented encoding branch such as a spectral domain encoding branch, a second information source or SNR oriented encoding branch such as an LPC-domain encoding branch, and a switch for switching between the first encoding branch and the second encoding branch, wherein the second encoding branch has a converter into a specific domain different from the spectral domain such as an LPC analysis stage generating an excitation signal, and wherein the second encoding branch furthermore has a specific domain coding branch such as LPC domain processing branch, and a specific spectral domain coding branch such as LPC spectral domain processing branch, and an additional switch for switching between the specific domain coding branch and the specific spectral domain coding branch. An audio decoder has a first domain decoder such as a spectral domain decoding branch, a second domain decoder such as an LPC domain decoding branch for decoding a signal such as an excitation signal in the second domain, and a third domain decoder such as an LPC-spectral decoder branch and two cascaded switches for switching between the decoders.
摘要:
An audio signal decoder includes a transform domain path configured to obtain a time-domain representation of a portion of an audio content on the basis of a first set of spectral coefficients, a representation of an aliasing-cancellation stimulus signal and a plurality of linear-prediction-domain parameters. The transform domain path applies a spectrum shaping to the first set of spectral coefficients to obtain a spectrally-shaped version thereof. The transform domain path obtains a time-domain representation of the audio content on the basis of the spectrally-shaped version of the first set of spectral coefficients. The transform domain path includes an aliasing-cancellation stimulus filter to filter the aliasing-cancellation stimulus signal in dependence on at least a subset of the linear-prediction-domain parameters. The transform domain path also includes a combiner configured to combine the time-domain representation of the audio content with an aliasing-cancellation synthesis signal to obtain an aliasing reduced time-domain signal.
摘要:
An audio signal decoder includes a transform domain path configured to obtain a time-domain representation of a portion of an audio content on the basis of a first set of spectral coefficients, a representation of an aliasing-cancellation stimulus signal and a plurality of linear-prediction-domain parameters. The transform domain path applies a spectrum shaping to the first set of spectral coefficients to obtain a spectrally-shaped version thereof. The transform domain path obtains a time-domain representation of the audio content on the basis of the spectrally-shaped version of the first set of spectral coefficients. The transform domain path includes an aliasing-cancellation stimulus filter to filter the aliasing-cancellation stimulus signal in dependence on at least a subset of the linear-prediction-domain parameters. The transform domain path also includes a combiner configured to combine the time-domain representation of the audio content with an aliasing-cancellation synthesis signal to obtain an aliasing reduced time-domain signal.
摘要:
An audio encoder adapted for encoding frames of a sampled audio signal to obtain encoded frames, wherein a frame includes a number of time domain audio samples. The audio encoder includes a predictive coding analysis stage for determining information on coefficients of a synthesis filter and a prediction domain frame based on a frame of audio samples. The audio encoder further includes a time-aliasing introducing transformer for transforming overlapping prediction domain frames to the frequency domain to obtain prediction domain frame spectra, wherein the time-aliasing introducing transformer is adapted for transforming the overlapping prediction domain frames in a critically-sampled way. Moreover, the audio encoder includes a redundancy reducing encoder for encoding the prediction domain frame spectra to obtain the encoded frames based on the coefficients and the encoded prediction domain frame spectra.
摘要:
An audio encoder adapted for encoding frames of a sampled audio signal to obtain encoded frames, wherein a frame includes a number of time domain audio samples. The audio encoder includes a predictive coding analysis stage for determining information on coefficients of a synthesis filter and a prediction domain frame based on a frame of audio samples. The audio encoder further includes a time-aliasing introducing transformer for transforming overlapping prediction domain frames to the frequency domain to obtain prediction domain frame spectra, wherein the time-aliasing introducing transformer is adapted for transforming the overlapping prediction domain frames in a critically-sampled way. Moreover, the audio encoder includes a redundancy reducing encoder for encoding the prediction domain frame spectra to obtain the encoded frames based on the coefficients and the encoded prediction domain frame spectra.
摘要:
An audio encoder for encoding audio samples has a first time domain aliasing introducing encoder configured to decode audio samples in a first encoding domain and having a first framing rule, a start window and a stop window. The audio encoder further has a second encoder configured to encode samples in a second encoding domain and having a predetermined frame size number of audio samples, and a coding warm-up period number of audio samples, the second encoder having a different second framing rule, a frame of the second encoder being an encoded representation of a number of successive audio samples that is equal to the predetermined frame size number of audio samples. The audio encoder further has a controller switching from the first to the second encoder and for modifying the second framing rule or for modifying the start or the stop window of the first encoder.
摘要:
An audio encoder for encoding audio samples has a first time domain aliasing introducing encoder configured to decode audio samples in a first encoding domain and having a first framing rule, a start window and a stop window. The audio encoder further has a second encoder configured to encode samples in a second encoding domain and having a predetermined frame size number of audio samples, and a coding warm-up period number of audio samples, the second encoder having a different second framing rule, a frame of the second encoder being an encoded representation of a number of successive audio samples that is equal to the predetermined frame size number of audio samples. The audio encoder further has a controller switching from the first to the second encoder and for modifying the second framing rule or for modifying the start or the stop window of the first encoder.