Abstract:
A variable geometry turbocharger includes a vane pack having rotatable vanes constrained by a pair of vane rings held together by a plurality of pins. A first end of each pin can be configured with a head. Each pin is received in a pair of aligned apertures in the vane rings such that the head of each pin engages one of the vane rings. A second end of each pin is deformed (e.g., by orbital riveting) such that it engages the other vane ring. Thus, a clamp load is applied to the vane rings, which can control the parallelism and distance between the vane rings so that the vanes can rotate with a minimum clearance without jamming. Also, the pins can maintain vane axle apertures in the vane rings in the correct angular position relative to each other. Such a vane pack configuration can reduce process time and cost.
Abstract:
A turbocharger (10) for an internal combustion engine includes a symmetric twin-volute turbine housing (12) having first and second volutes (16, 18). A turbine wheel (22) is disposed within the symmetric twin-volute turbine housing (12) for rotation about a turbocharger axis (R1). A nozzle ring (42, 58) is fixedly secured to the symmetric twin-volute turbine housing (12). The nozzle ring (42, 58) includes a plurality of fixed vanes (44, 62, 66) disposed circumferentially around the turbocharger axis (R1). The plurality of fixed vanes (44, 62, 66) form nozzle passages leading from at least one of the first and second volutes (16, 18) to the turbine wheel (22) for directing exhaust gas against the turbine wheel (22) at an optimum angle.
Abstract:
An adjustment ring (50) is configured to facilitate vane (30) position adjustment in a variable turbine geometry turbocharger (1), and is formed of an assembly of one or more first ring portions (60) that are formed of a first material, and one or more second ring portions (61) that are formed of a second material. The first material has different material properties than the second material. In some embodiments, high-wear portions of the adjustment ring (50) can selectively and cost-effectively be formed of wear-resistant material while remaining portions are formed of a conventional material. A cost-effective method of manufacturing multi-piece adjustment rings (50) is described.
Abstract:
A plurality of guide vanes (34) in a variable turbine geometry turbocharger (10) regulates a flow of exhaust gas. The guide vanes (34) are selectively adjustable between an open position to allow the flow of exhaust gas to drive a turbine wheel (24) and a closed position to block the flow of exhaust gas. A first flow feature (58) is disposed on first (44) and second (46) edges of the guide vanes (34) to disturb the flow of exhaust gas to prevent leakage of exhaust gas around the first (44) and second (46) edges. A second flow feature (64) is disposed on front (60) and rear (62) surfaces of the guide vanes (34) to channel the flow of exhaust gas between adjacent guide vanes (34) when the guide vanes (34) are in the open position to prevent swirling and/or cross flow of the exhaust gas.
Abstract:
A plurality of guide vanes (34) in a variable turbine geometry turbocharger (10) regulates a flow of exhaust gas. The guide vanes (34) are selectively adjustable between an open position to allow the flow of exhaust gas to drive a turbine wheel (24) and a closed position to block the flow of exhaust gas. A first flow feature (58) is disposed on first (44) and second (46) edges of the guide vanes (34) to disturb the flow of exhaust gas to prevent leakage of exhaust gas around the first (44) and second (46) edges. A second flow feature (64) is disposed on front (60) and rear (62) surfaces of the guide vanes (34) to channel the flow of exhaust gas between adjacent guide vanes (34) when the guide vanes (34) are in the open position to prevent swirling and/or cross flow of the exhaust gas.