摘要:
A bar code scanner employs an electronic means for causing the light beam to scan a bar code symbol, rather than using a mechanical device to generate the scan. A linear array of light sources, activated one at a time in a regular sequence, may be imaged upon the bar code symbol to simulate a scanned beam. Instead of a single linear array of light sources, a multiple-line array may be employed, producing multiple scan lines. The multiple scan lines may be activated in sequence, or activated simultaneously (time-division or frequency-division multiplexed. The multiple scan lines can provide signal enhancement, noise reduction or fault correction if directed to the same bar code pattern. Multiple scan lines may be generated using a single light source and a beam splitter, with mechanical scanning, as well as by the sequentially-activated light suorces. Multiple simultaneous scan lines may be employed to generate a raster scan at lower mechanical scan frequency. In another embodiment, a tunable laser may be employed to provide a scan without moving parts; a laser beam from the tunable laser is reflected from a diffraction grating that produces an angular deviation dependent upon the wavelength of the laser output. As the frequency of the tunable laser is varied in some selected pattern, the laser beam will scan accordingly.
摘要:
A bar code scanner employs an electronic means for causing the light beam to scan a bar code symbol, rather than using a mechanical device to generate the scan. A linear array of light sources, activated one at a time in a regular sequence, may be imaged upon the bar code symbol to simulate a scanned beam. Instead of a single linear array of light sources, a multiple-line array may be employed, producing multiple scan lines. The multiple scan lines may be activated in sequence, or activated simultaneously (time-division or frequency-division multiplexed. The multiple scan lines can provide signal enhancement, noise reduction or fault correction if directed to the same bar code pattern. Multiple scan lines may be generated using a single light source and a beam splitter, with mechanical scanning, as well as by the sequentially-activated light sources. Multiple simultaneous scan lines may be employed to generate a raster scan at lower mechanical scan frequency. In another embodiment, a tunable laser may be employed to provide a scan without moving parts; a laser beam from the tunable laser is reflected from a diffraction grating that produces an angular deviation dependent upon the wavelength of the laser output. As the frequency of the tunable laser is varied in some selected pattern, the laser beam will scan accordingly.