摘要:
A method and apparatus for automatic alignment of ink-jet printheads includes fitting measuring constructs to actual print data acquired form a print made using a given, predetermined, test pattern data set. Specific test patterns for use in automated alignment of ink-jet printheads are suited to providing a variety of printhead alignment information in a compact format. The test pattern data set incorporates techniques for avoiding carriage-induced dynamic errors during automated alignment of ink-jet printheads.
摘要:
A method and means for automatic alignment of ink-jet printheads includes fitting measuring constructs to actual print data acquired form a print made using a given, predetermined, test pattern data set. Specific test patterns for use in automated alignment of ink-jet printheads are suited to providing a variety of printhead alignment information in a compact format. The test pattern data set incorporates techniques for avoiding carriage-induced dynamic errors during automated alignment of ink-jet printheads.
摘要:
A method and apparatus for automatic alignment of ink-jet printheads includes fitting measuring constructs to actual print data acquired form a print made using a given, predetermined, test pattern data set. Specific test patterns for use in automated alignment of ink-jet printheads are suited to providing a variety of printhead alignment information in a compact format. The test pattern data set location finding algorithm incorporates techniques for avoiding carriage-induced dynamic errors during automated alignment of ink-jet printheads.
摘要:
Two motors are used to provide motion control in a transport drive system. A primary motor, or a primary and secondary motor, provides primary power for accelerated motion. PWM signals are used to drive the motors according to predetermined fixed functions related to acceleration, deceleration and hold of a load. Alternatively, during onset of large or high speed moves, the primary and secondary motors are on in tandem. During deceleration of a move, the torque provided by the secondary motor is reversed, providing active braking and ensuring the drive train remains loaded wherein backlash is eliminated. During a driver hold phase, the primary and secondary motor push against each other to actively control positioning.
摘要:
Optical encoder system designs and methods for use thereof in printing devices are disclosed which are directed to solving problems caused by contaminant matter accumulating on optical encoder strips as well as scratching of optical encoder strips. An embodiment includes a dispenser and a take-up mechanism. The dispenser includes an encoder strip having first and second lengths. The second length of encoder strip is substantially free of contaminant matter. The first length of the encoder strip is coupled to the take-up mechanism so that the first length of the encoder strip is positioned between the dispenser and take-up mechanism. The take-up mechanism is configured to advance at least a portion of the second length of the encoder strip from the dispenser to a position between the dispenser and take-up mechanism upon actuation of the take-up mechanism. An embodiment of a method in accordance with the present invention includes providing a first length of encoder strip to the printing device for use during printing that is substantially free of contaminant matter upon initial provision to the printing device. The method additionally includes removing the first length of encoder strip from use by the printing device and advancing a second length of encoder strip to the printing device for use during printing that is substantially free of contaminant matter upon initial advancement to the printing device. Modifications to these embodiments as well as other embodiments are within the scope and spirit of the present invention.
摘要:
A print media ejection system actively pushes a media sheet trailing edge into an output tray. The ejection system includes a movable pivot which supports a media sheet within a print zone during printing. Upon completion of printing the pivot moves downward allowing the current media sheet to slide from the pivot into the output tray. After the pivot completes the downward rotational stroke, the pivot rotates back upward to be in position to support the next media sheet. The upward motion of the pivot mechanism actuates a kicker device to rotate toward an output region. The kicker device drives any remaining portion of the media sheet into the output tray.