Abstract:
The present invention is directed to a method of thermochemical forming H2, O2, or a combination thereof from water, said method comprising the steps of contacting a composition comprising a spinel-type transition metal oxide of formula M3O4 with an alkali metal carbonate bicarbonate, or mixture thereof in the presence of H2O to form H2, CO2, and an alkali metal ion-transition metal oxide; hydrolytically extracting at least a portion of alkali metal ions from the alkali metal ion-transition metal oxide by the reaction with CO2 and liquid H2O; and thermochemically reducing the resulting oxidized-transition metal oxide. The thermochemical reduction of CO2 based on analogous methods is also disclosed.
Abstract:
The present invention is directed to methods of enhancing the catalytic activities of 8-MR zeolites, the methods comprising treating a precursor 8-MR zeolite that has been prepared without the use of an organic structure directing agent and having an Si/Al ratio of less than 5, with high temperature steam for a period of time sufficient to extract at least a portion of the aluminum from the precursor zeolite framework to form a steam-treated zeolite having an Si/tetrahedral Al ratio of greater than 5, wherein the steam has a temperature in a range of from about 350° C. to about 850° C. The compositions produced by these methods and their use in catalytic reactions are also provided.
Abstract:
The present disclosure is directed to methods of catalytically reducing carbon dioxide, each method comprising: contacting a composition comprising a spinel-type transition iron oxide with an alkali metal carbonate, bicarbonate, or mixture thereof at a first temperature to form CO, and an alkali metal ion-transition metal oxide; hydrolytically extracting at least a portion of alkali metal ions from the alkali metal ion-transition metal oxide by the reaction with CO2 and liquid H2O at a second temperature; and thermochemically reducing the transition metal composition of the second step at a third temperature, with the associated formation of O2.