Abstract:
A liquid ejection head includes a first substrate including a structure and a second substrate bonded to the first substrate with an adhesive, wherein the first substrate includes a bonding surface bonded to the second substrate with the adhesive and a non-bonding surface that is not bonded to the second substrate, and wherein a recessed portion is disposed in the non-bonding surface between the structure and a bonding end of the bonding surface adjacent to the structure.
Abstract:
A liquid ejection head includes a first substrate including a structure and a second substrate bonded to the first substrate with an adhesive, wherein the first substrate includes a bonding surface bonded to the second substrate with the adhesive and a non-bonding surface that is not bonded to the second substrate, and wherein a recessed portion is disposed in the non-bonding surface between the structure and a bonding end of the bonding surface adjacent to the structure.
Abstract:
A method of manufacturing an inkjet head substrate is provided. The inkjet head substrate includes an ink supply port having a through portion and a non-through portion, and the non-through portion is disposed at a position closer than the through portion to the energy generating element. The method includes disposing a mask having an opening that has a relatively large opening-width portion and a relatively small opening-width portion. The method also includes forming the through portion in the substrate at a position corresponding to the relatively large opening-width portion and the non-through portion in the substrate at a position corresponding to the relatively small opening-width portion by performing reactive ion etching on the substrate through the opening of the mask in one operation.
Abstract:
A method of forming a through-substrate having a first surface and a second surface opposite to the first surface, the method causing the first surface to communicate with the second surface through the substrate, the method including: a first step that forms a first trench from the first surface side of the substrate using dry etching, the first trench having side surfaces on which protective film is formed; and a second step that forms a second trench from the second surface side using dry etching, the second trench communicating with the first trench having the side surfaces on which the protective film is formed.
Abstract:
A liquid ejection head includes a first substrate including a structure and a second substrate bonded to the first substrate with an adhesive, wherein the first substrate includes a bonding surface bonded to the second substrate with the adhesive and a non-bonding surface that is not bonded to the second substrate, and wherein a recessed portion is disposed in the non-bonding surface between the structure and a bonding end of the bonding surface adjacent to the structure.
Abstract:
Provided is a liquid ejection head substrate, in which a plurality of units are arranged. Each of the units includes: a pressure generating element formed on a first surface of a support substrate; and a pair of independent liquid chambers, which are formed on both sides of the pressure generating element so as to be opposed to each other, and are opened to the first surface of the support substrate. The liquid ejection head substrate includes, in the support substrate: a first common liquid chamber communicating to a plurality of independent liquid chambers on one side of the pair of independent liquid chambers; a second common liquid chamber communicating to a plurality of independent liquid chambers on another side of the pair of independent liquid chambers; and a partition wall separating the first common liquid chamber and the second common liquid chamber from each other.
Abstract:
A method for processing a silicon substrate, comprising the steps of providing a silicon substrate having a first surface and a second surface, forming a non-penetrated hole extending from the first surface toward the second surface side in the silicon substrate, sticking a sealing tape comprising a support member and an adhesive layer on the first surface and filling at least part of the non-penetrated hole with the adhesive layer, performing reactive ion etching from the second surface toward the first surface side to allow the reactive ion etching to reach the adhesive layer filled in the non-penetrated hole and to expose the adhesive layer, and peeling the sealing tape from the silicon substrate to form a through hole in the silicon substrate.
Abstract:
A method of making a semiconductor substrate having a through-hole includes a step of forming an etching mask on a semiconductor substrate in accordance with a pattern corresponding to the through-hole, and a step of forming the through-hole by etching the semiconductor substrate, on which the etching mask has been formed, by reactive ion etching. At least a part of the pattern corresponding to the through-hole is formed so that the semiconductor substrate is exposed in a frame-like shape along the inner edge of the through-hole.
Abstract:
A liquid discharge head including a substrate, and an energy-generating element. The substrate is provided with a flow path that penetrates through the substrate from the first surface to a second surface, the flow path supplying the liquid from the second surface side to the first surface side. The flow path includes a plurality of first flow paths and a second flow path that is positioned on the second surface side with respect to the first flow paths. The plurality of first flow paths are open on a bottom portion of the second flow path, and the plurality of first flow paths include a long flow path relatively long in a direction perpendicular to the first surface, and a relatively short flow path. The long flow path has a flow path resistance per unit length that is smaller than that of the short flow path.
Abstract:
A liquid ejection head includes a substrate, an energy-generating element provided on a front surface side of the substrate, the energy-generating element generating energy for ejecting liquid, sidewall members of a liquid flow path, and an ejection port forming member that defines an ejection port from which the liquid is ejected. In the liquid ejection head, sidewalls of the liquid flow path are formed of the sidewall members and a top wall of the liquid flow path is formed of the ejection port forming member, the sidewall members are each formed of a core member that extends from a front surface of the substrate and a covering member that covers the surface of the core member, the covering member covers the front surface of the substrate, and the ejection port forming member is formed of an inorganic material.