Abstract:
A CPU detects an operation state on a fingerboard at a prescribed period, stores the detected operation state in a memory every time an operation state is detected, detects whether or not any of a plurality of extended strings has been struck, determines a pitch of a note to be played based on the operation state stored in the memory in response to a string being struck, and controls a note to be played in a sound source based on the detected operation state and the operation state stored in the memory every time the operation state is detected after a command to play a note of a determined pitch is issued to the sound source.
Abstract:
An electronic stringed instrument 1 includes a string-pressing sensor 44 that detects a state of contact between each of a plurality of frets 23 and each of a plurality of strings 22. A CPU 41 detects that picking of any of the plurality of strings 22, provides a sound generation instruction to a connected sound source 45 to produce musical sound of a pitch determined based on the detected state of contact, detects a vibration pitch of the string 22 of which picking was detected, and corrects the pitch of the musical sound generated by the connected sound source 45 based on the detected vibration pitch.
Abstract:
A CPU 41 acquires a string vibration signal in a case where a string picking operation is performed with respect to the stretched string 22, analyzes a frequency characteristic of the acquired string vibration signal, determines whether or not the analyzed frequency characteristic satisfies a predetermined condition, and changes a frequency characteristic of a musical sound generated in the connected sound source 45 depending on a case where it is determined that the predetermined condition is satisfied or determined that the predetermined condition is not satisfied.
Abstract:
A CPU 41 determines whether or not the detected level of string picking strength exceeds a predetermined first level, and in a case of determining that the predetermined first level is exceeded, determines whether or not a condition is satisfied that the number of the frets 23 in contact with the string 22 detected as a picked string is a predetermined number or more (10 or more) while the frets in contact therewith as above are located within a predetermined area from the bridge 16 (the fret number 18 or higher). In a case where it is determined that the condition is satisfied, the CPU 41 instructs the connected sound source 45 to generate a predefined slap sound.
Abstract:
An electronic stringed musical instrument is provided which is capable of performing string-pressing detection while maintain a neck strength without lowering reliability. Here, Radio-Frequency Identification (RFID) tags where wiring is not necessary are arranged between frets for each of the first to sixth strings, whereby its neck strength is maintained. When a string comes close to an RFID tag in response to a string-pressing operation, the RFID tag wirelessly transmits first identification information including at least its own “fret number (string-pressed point)” using electrical power acquired by receiving a radio wave transmitted from the string that functions as an antenna. Then, this information is received and demodulated via the string that functions as an antenna. That is, the string-pressed point is detected by non-contact detection, so that string-pressing detection can be performed without lowering reliability.
Abstract:
A CPU 41 detects an operation performed with respect to a plurality of frets 23 provided on a fingerboard 21, decides pitch of a musical sound to be generated based on the detected operation, decides sound generation timing for the musical sound to be generated, instructs a sound source to generate a musical sound of the decided pitch at the decided sound generation timing, and controls the musical sound generated in the sound source 45 based on a state of the detected operation.
Abstract:
An electronic stringed instrument has a bridge section attached to one end portion of each of a plurality of conductive strings; a string touch sensor detecting a pitch when the strings are respectively pressed against and conducted to a plurality of conductive metal frets; bridge saddles and insulation tubes, which insulate the strings from the bridge section; and electrically conductive tubes, serving as connection sections, respectively connected and conducted to the strings. While holding a string with a finger, the same string can be picked, and the string pushed by the finger can be pressed against the metal fret. Accordingly, the string can be operated without a sense of incongruity. Because the strings and the bridge section can be insulated even when the bridge section is formed of metal, musical sound information can be precisely and reliably detected, and a favorable musical performance can be achieved.