Abstract:
Provided are systems, methods, and computer-readable media for encoding, transmitting and decoding content having high fidelity and high motion content. In one aspect, a device includes at least one processor and at least memory having computer-readable instructions, which when executed by the at least one processor, cause the at least one processor to receive an encoded frame; determine whether the encoded frame includes at least one region having high fidelity content; and upon determining that the encoded frame includes at least one region having high fidelity content, perform a first decoding process for decoding the at least one region having high fidelity content, display a previous version of the high fidelity content on a display while the first decoding process is being performed, and display a decoded version of the at least one region having the high fidelity content on the display when performing the first decoding process is complete.
Abstract:
In one embodiment, an apparatus comprises a memory that stores executable instructions and a processor that executes the instructions in order to determine, for plural received compressed video inputs, at least one motion vector included in each of the plural compressed video inputs; calculate, based on the determined motion vectors, a motion value corresponding to each of the plural compressed video inputs, the motion values representing a level of motion over several frames for each of the plural compressed video inputs; and select, based on the calculated motion values, at least one of the plural compressed video inputs to be displayed.
Abstract:
In one embodiment, an apparatus comprises a memory that stores executable instructions and a processor that executes the instructions in order to determine, for plural received compressed video inputs, at least one motion vector included in each of the plural compressed video inputs; calculate, based on the determined motion vectors, a motion value corresponding to each of the plural compressed video inputs, the motion values representing a level of motion over several frames for each of the plural compressed video inputs; and select, based on the calculated motion values, at least one of the plural compressed video inputs to be displayed.
Abstract:
Systems and methods are disclosed for anticipating a video switch to accommodate a new speaker in a video conference comprising a real time video stream captured by a camera local to a first videoconference endpoint is analyzed according to at least one speaker anticipation model. The speaker anticipation model predicts that a new speaker is about to speak. Video of the anticipated new speaker is sent to the conferencing server in response to a request for the video on the anticipated new speaker from the conferencing server. Video of the anticipated new speaker is distributed to at least a second videoconference endpoint.
Abstract:
Provided are systems, methods, and computer-readable media for encoding, transmitting and decoding content having high fidelity and high motion content. In one aspect, a device includes at least one processor and at least memory having computer-readable instructions, which when executed by the at least one processor, cause the at least one processor to receive an encoded frame; determine whether the encoded frame includes at least one region having high fidelity content; and upon determining that the encoded frame includes at least one region having high fidelity content, perform a first decoding process for decoding the at least one region having high fidelity content, display a previous version of the high fidelity content on a display while the first decoding process is being performed, and display a decoded version of the at least one region having the high fidelity content on the display when performing the first decoding process is complete.
Abstract:
In one embodiment, an apparatus comprises a memory that stores executable instructions and a processor that executes the instructions in order to determine, for plural received compressed video inputs, at least one motion vector included in each of the plural compressed video inputs; calculate, based on the determined motion vectors, a motion value corresponding to each of the plural compressed video inputs, the motion values representing a level of motion over several frames for each of the plural compressed video inputs; and select, based on the calculated motion values, at least one of the plural compressed video inputs to be displayed.
Abstract:
Systems and methods are disclosed for anticipating a video switch to accommodate a new speaker in a video conference comprising a real time video stream captured by a camera local to a first videoconference endpoint is analyzed according to at least one speaker anticipation model. The speaker anticipation model predicts that a new speaker is about to speak. Video of the anticipated new speaker is sent to the conferencing server in response to a request for the video on the anticipated new speaker from the conferencing server. Video of the anticipated new speaker is distributed to at least a second videoconference endpoint.
Abstract:
Systems and methods are disclosed for anticipating a video switch to accommodate a new speaker in a video conference comprising a real time video stream captured by a camera local to a first videoconference endpoint is analyzed according to at least one speaker anticipation model. The speaker anticipation model predicts that a new speaker is about to speak. Video of the anticipated new speaker is sent to the conferencing server in response to a request for the video on the anticipated new speaker from the conferencing server. Video of the anticipated new speaker is distributed to at least a second videoconference endpoint.
Abstract:
Systems and methods are disclosed for anticipating a video switch to accommodate a new speaker in a video conference comprising a real time video stream captured by a camera local to a first videoconference endpoint is analyzed according to at least one speaker anticipation model. The speaker anticipation model predicts that a new speaker is about to speak. Video of the anticipated new speaker is sent to the conferencing server in response to a request for the video on the anticipated new speaker from the conferencing server. Video of the anticipated new speaker is distributed to at least a second videoconference endpoint.
Abstract:
In one embodiment, an apparatus includes a memory that stores executable instructions and a processor that executes the instructions. The processor may determine, for plural received compressed video inputs received from one or more endpoints in a video conference, at least one motion vector included in each of the plural compressed video inputs. The processor may calculate, based on the determined motion vectors, a motion value corresponding to each of the plural compressed video inputs, the motion values representing a level of motion over several frames for each of the plural compressed video inputs. The processor may allocate, based on the calculated motion values, bandwidth to the one or more endpoints in the video conference.