摘要:
An apparatus for forming glass tubing is described. The apparatus for forming glass tubing comprises an endless former with an outer surface and an inner passage defining an inner surface. The apparatus for forming glass tubing further comprises two chambers from which molten glass may flow. One chamber flows molten glass to the outer surface of the endless former and another chamber flows molten glass to the inner surface of the endless former. The two flows of molten glass meet at the bottom of the former to form glass tubing.
摘要:
Repositionable heater assemblies and methods of controlling temperature of glass in production lines using the repositionable heater assemblies are disclosed. The repositionable heater assembly includes a support frame, a first sled and a second sled each coupled to the support frame with bearing members that allow the first sled and the second sled to translate in a longitudinal direction. Each of the first sled and the second sled include at least one heating element, where the heating elements are spaced apart from the glass ribbon a spacing distance. The first and second sleds are movable in the longitudinal direction to controlling the spacing distance between the heating elements of the first sled and the second sled and the glass ribbon to manage temperature of the glass ribbon.
摘要:
An apparatus for forming glass tubing is described. The apparatus for forming glass tubing comprises an endless former with an outer surface and an inner passage defining an inner surface. The apparatus for forming glass tubing further comprises two chambers from which molten glass may flow. One chamber flows molten glass to the outer surface of the endless former and another chamber flows molten glass to the inner surface of the endless former. The two flows of molten glass meet at the bottom of the former to form glass tubing.
摘要:
Repositionable heater assemblies and methods of controlling temperature of glass in production lines using the repositionable heater assemblies are disclosed. The repositionable heater assembly includes a support frame, a first sled and a second sled each coupled to the support frame with bearing members that allow the first sled and the second sled to translate in a longitudinal direction. Each of the first sled and the second sled include at least one heating element, where the heating elements are spaced apart from the glass ribbon a spacing distance. The first and second sleds are movable in the longitudinal direction to controlling the spacing distance between the heating elements of the first sled and the second sled and the glass ribbon to manage temperature of the glass ribbon.
摘要:
Repositionable heater assemblies and methods of controlling temperature of glass in production lines using the repositionable heater assemblies are disclosed. The repositionable heater assembly includes a support frame, a first sled and a second sled each coupled to the support frame with bearing members that allow the first sled and the second sled to translate in a longitudinal direction. Each of the first sled and the second sled include at least one heating element, where the heating elements are spaced apart from the glass ribbon a spacing distance. The first and second sleds are movable in the longitudinal direction to controlling the spacing distance between the heating elements of the first sled and the second sled and the glass ribbon to manage temperature of the glass ribbon.
摘要:
Repositionable heater assemblies and methods of controlling temperature of glass in production lines using the repositionable heater assemblies are disclosed. The repositionable heater assembly includes a support frame, a first sled and a second sled each coupled to the support frame with bearing members that allow the first sled and the second sled to translate in a longitudinal direction. Each of the first sled and the second sled include at least one heating element, where the heating elements are spaced apart from the glass ribbon a spacing distance. The first and second sleds are movable in the longitudinal direction to controlling the spacing distance between the heating elements of the first sled and the second sled and the glass ribbon to manage temperature of the glass ribbon.
摘要:
A glass forming apparatus and method include a weir on at least a first side of a molten core glass reservoir. The weir includes an inclined surface that, in the intended direction of molten glass flow, slopes downward in the vertical direction while extending away from the molten core glass reservoir in the horizontal direction. A source of molten clad glass is configured above the glass forming apparatus such that when molten clad glass is flowing down and molten core glass is flowing over the weir, the molten clad glass drops onto the molten core glass at a highest upstream contact point that is located directly above the inclined surface of the weir.
摘要:
In one embodiment, a pulling roll for drawing glass sheet in a down-draw process includes a shaft member and a compliant cover assembly positioned on the shaft member. The compliant cover assembly includes at least one traction disk positioned on the shaft member. The at least one traction disk includes an annular hub and a plurality of spring elements integrally formed with the annular hub. The spring elements project outward from the annular hub such that an end of each spring element is positioned radially outward from a base of each spring element and is circumferentially offset relative to the base of each spring element.
摘要:
An apparatus for fusion draw glass manufacture, including: at least one isopipe having at least one weir; and a fluid discharge member in proximity to the at least one weir of the at least one isopipe, the fluid discharge member is in fluid communication with a remote fluid source. Methods of making and using the apparatus are also disclosed.
摘要:
An apparatus for forming glass tubing is described. The apparatus for forming glass tubing comprises an endless former with an outer surface and an inner passage defining an inner surface. The apparatus for forming glass tubing further comprises two chambers from which molten glass may flow. One chamber flows molten glass to the outer surface of the endless former and another chamber flows molten glass to the inner surface of the endless former. The two flows of molten glass meet at the bottom of the former to form glass tubing.