Abstract:
Permanent magnets are used for several important applications, including dc electrical motors, wind turbines, hybrid automobile, and for many other applications. Modern widely used rare-earth based permanent magnet materials, such as Sm—Co and Nd—Fe—B, are generally intermetallic alloys made from rare earth elements and transition metals such as cobalt. However, the high costs of rare earth elements make the widespread use of these permanent magnets commercially unattractive. The present work focuses on producing a new permanent magnet material, with good magnetic properties, which is free from rare-earth elements and thus cost-effective. The present invention provides a process to synthesis boron doped manganese antimonide as an alternative to rare earth based permanent magnet materials. The boron doped manganese antimonide disclosed in this invention is free from rare-earth element with good magnetic properties. The material in the present study has been synthesized employing sequential combination of high energy ball milling, arc melting under argon atmosphere and again high energy ball milling followed by annealing. The annealed boron doped manganese antimonide shows improved magnetic properties as compared to manganese antimonide.
Abstract:
Permanent magnets are used for several important applications, including de electrical motors, wind turbines, hybrid automobile, and for many other applications. Modern widely used rare-earth based permanent magnet materials, such as Sm—Co and Nd—Fe—B, are generally intermetallic alloys made from rare earth elements and transition metals such as cobalt. However, the high costs of rare earth elements make the widespread use of these permanent magnets commercially unattractive. The present work focuses on producing a new permanent magnet material, with good magnetic properties, which is free from rare-earth elements and thus cost-effective. The present invention provides a process to synthesis boron doped manganese antimonide as an alternative to rare earth based permanent magnet materials. The boron doped manganese antimonide disclosed in this invention is free from rare-earth element with good magnetic properties. The material in the present study has been synthesized employing sequential combination of high energy ball milling, arc melting under argon atmosphere and again high energy ball milling followed by annealing. The annealed boron doped manganese antimonide shows improved magnetic properties as compared to manganese antimonide.