摘要:
Improvements to user interfaces for ophthalmic imaging systems, in particular Optical Coherence Tomography (OCT) systems are described to improve how diagnostic data are displayed, analyzed and presented to the user. The improvements include user customization of display and reports, protocol driven work flow, bookmarking of particular B-scans, accessing information from a reference library, customized normative databases, and ordering of follow-up scans directly from a review screen. A further aspect is the ability to optimize the contrast and quality of displayed B-scans using a single control parameter. Virtual real time z-tracking is described that maintains displayed data in the same depth location regardless of motion.
摘要:
Systems and methods for improved acquisition of ophthalmic optical coherence tomography data are presented, allowing for enhanced ease of use and higher quality data and analysis functionality. Embodiments include automated triggering for detecting and initiating collection of OCT ophthalmic data, an automated technique for determining the optimal number of B-scans to be collected to create the highest quality image and optimize speckle reduction, automated review of fundus images collected with an adjunct imaging modality to guide the OCT data collection, a single scan protocol in which a large field of view is collected with HD B-scans embedded at different locations depending on automated analysis of either a fundus image or sparse OCT scan, and various scan configurations for imaging eyes with large axial depth range.
摘要:
Improvements to user interfaces for ophthalmic imaging systems, in particular Optical Coherence Tomography (OCT) systems are described to improve how diagnostic data are displayed, analyzed and presented to the user. The improvements include user customization of display and reports, protocol driven work flow, bookmarking of particular B-scans, accessing information from a reference library, customized normative databases, and ordering of follow-up scans directly from a review screen. A further aspect is the ability to optimize the contrast and quality of displayed B-scans using a single control parameter. Virtual real time z-tracking is described that maintains displayed data in the same depth location regardless of motion.
摘要:
Methods for analyzing and visualizing OCT angiography data are presented. In one embodiment, an automated method for identifying the foveal avascular zone in a two dimensional en face image generated from motion contrast data is presented. Several 3D visualization techniques are presented including one in which a particular vessel is selected in a motion contrast image and all connected vessels are highlighted. A further embodiment includes a stereoscopic visualization method. In addition, a variety of metrics for characterizing OCT angiography image data are described.
摘要:
Improvements to user interfaces for ophthalmic imaging systems, in particular Optical Coherence Tomography (OCT) systems are described to improve how diagnostic data are displayed, analyzed and presented to the user. The improvements include user customization of display and reports, protocol driven work flow, bookmarking of particular B-scans, accessing information from a reference library, customized normative databases, and ordering of follow-up scans directly from a review screen. A further aspect is the ability to optimize the contrast and quality of displayed B-scans using a single control parameter. Virtual real time z-tracking is described that maintains displayed data in the same depth location regardless of motion.
摘要:
A method is disclosed for analyzing 3D image data generated from optical coherence tomography (OCT) systems. The first step in the method is to identify one or more surfaces within the 3D data set. The surfaces are then characterized using geometric primitives. Geometric primitives such as concavities, convexities, planar parts, saddles, and crevices can be used. In a preferred embodiment, the primitives are combined. Various pathological conditions of the eye can be evaluated based on any analysis of the primitives.
摘要:
Methods for analyzing and visualizing OCT angiography data are presented. In one embodiment, an automated method for identifying the foveal avascular zone in a two dimensional en face image generated from motion contrast data is presented. Several 3D visualization techniques are presented including one in which a particular vessel is selected in a motion contrast image and all connected vessels are highlighted. A further embodiment includes a stereoscopic visualization method. In addition, a variety of metrics for characterizing OCT angiography image data are described.