Abstract:
A process for polymerizing radically (co)polymerizable monomers at a temperature between −10° C. and 110° C. in an aqueous system comprising one or more radically (co)polymerizable monomer(s) is disclosed, and includes a molar excess of a ligand forming a soluble transition metal complex with an added transition metal salt that participates in a reversible reduction-oxidation cycle with one of an added site specific functional initiator and a dormant polymer chain having a radically transferable atom or group. The initial soluble catalyst complex concentration in the higher oxidation state is less than or equal to 2500 ppm. The reaction is conducted in the presence of an activator regenerator. The mole fraction of the soluble lower activator oxidation state transition metal formed by action of the activator regenerator, to transition metal in a higher deactivator oxidation state is less than 10%. The formed polymer chains have a dispersity of less than 1.5.
Abstract:
A process for polymerizing radically (co)polymerizable monomers at a temperature between −10° C. and 110° C. in an aqueous system comprising one or more radically (co)polymerizable monomer(s) is disclosed, and includes a molar excess of a ligand forming a soluble transition metal complex with an added transition metal salt that participates in a reversible reduction-oxidation cycle with one of an added site specific functional initiator and a dormant polymer chain having a radically transferable atom or group. The initial soluble catalyst complex concentration in the higher oxidation state is less than or equal to 2500 ppm. The reaction is conducted in the presence of an activator regenerator. The mole fraction of the soluble lower activator oxidation state transition metal formed by action of the activator regenerator, to transition metal in a higher deactivator oxidation state is less than 10%. The formed polymer chains have a dispersity of less than 1.5.