Abstract:
A system for estimating the weight of a payload in a bucket is provided. The system includes a pivotable lift linkage, a lift cylinder assembly, a pivotable tilt linkage and a tilt cylinder assembly. A payload measurement system receives pressure data relating to a pressure in the lift cylinder assembly and angular position data relating to an angular position of the bucket relative. The payload measurement system is configured to estimate weight of a payload in the bucket based on the pressure data, the angular position data and predetermined physical parameters relating to the tilt linkage and lift linkage that are useable to characterize an effect of a portion of the payload that is supported by the tilt cylinder assembly.
Abstract:
A system for estimating the weight of a payload in a bucket of a machine is provided. The system includes a lift linkage supporting the bucket and a hydraulic lift cylinder assembly connected to the lift linkage. A pressure sensor is arranged remotely from the lift cylinder assembly. A payload measurement system is configured to monitor pressure data from the pressure sensor, hydraulic fluid temperature data and cylinder extension velocity data. The payload measurement system estimates a weight of the payload in the bucket based on the pressure data as adjusted by an estimate of a pressure drop between the lift cylinder assembly and the pressure sensor, the estimate of the pressure drop being determined based on a mathematical model that has been fitted to empirical data.
Abstract:
A system for estimating the weight of a payload in a bucket is provided. The system includes a pivotable lift linkage, a lift cylinder assembly, a pivotable tilt linkage and a tilt cylinder assembly. A payload measurement system receives pressure data relating to a pressure in the lift cylinder assembly and angular position data relating to an angular position of the bucket relative. The payload measurement system is configured to estimate weight of a payload in the bucket based on the pressure data, the angular position data and predetermined physical parameters relating to the tilt linkage and lift linkage that are useable to characterize an effect of a portion of the payload that is supported by the tilt cylinder assembly.
Abstract:
A system for estimating the weight of a payload in a bucket of a machine is provided. The system includes a lift linkage supporting the bucket and a hydraulic lift cylinder assembly connected to the lift linkage. A pressure sensor is arranged remotely from the lift cylinder assembly. A payload measurement system is configured to monitor pressure data from the pressure sensor, hydraulic fluid temperature data and cylinder extension velocity data. The payload measurement system estimates a weight of the payload in the bucket based on the pressure data as adjusted by an estimate of a pressure drop between the lift cylinder assembly and the pressure sensor, the estimate of the pressure drop being determined based on a mathematical model that has been fitted to empirical data.
Abstract:
A machine powertrain having a transmission includes a control device responsive to selectively vary the transmission ratio in response to a shift signal. A lift sensor associated with a machine implement monitors an implement position and provides a lift signal. A ground speed sensor monitors the ground speed and provides a ground speed signal. A controller monitors the lift and ground speed signals, compares the lift signal to a predetermined position range, compares the ground speed signal to a predetermined ground speed range and, when the ground speed signal is within the predetermined ground speed range and the lift signal is within the predetermined position range, provides the shift signal causing the selectively variable ratio of the transmission to change.
Abstract:
A machine powertrain having a transmission includes a control device responsive to selectively vary the transmission ratio in response to a shift signal. A lift sensor associated with a machine implement monitors an implement position and provides a lift signal. A ground speed sensor monitors the ground speed and provides a ground speed signal. A controller monitors the lift and ground speed signals, compares the lift signal to a predetermined position range, compares the ground speed signal to a predetermined ground speed range and, when the ground speed signal is within the predetermined ground speed range and the lift signal is within the predetermined position range, provides the shift signal causing the selectively variable ratio of the transmission to change.