Abstract:
An articulation control system for a machine may include an actual steering sensor configured to provide a signal indicative of an actual steering angle, a timer configured to provide a signal indicative of an elapsed predetermined period of time, and a controller in communication with the actual steering sensor and the timer. The controller may be configured to regulate automatic articulation to zero based on signals received from the actual steering sensor and the timer.
Abstract:
An apparatus and method are provided for operating a motor grader having steerable front wheels and a front and rear frame pivotally connected at an articulation joint. The method includes selecting an automatic articulation mode, and commanding front wheel steering to turn the motor grader, providing a plurality of front wheel steering corrections to an electronic controller, filtering the plurality of front wheel steering corrections using a method for filtering steering corrections based on the constant curve mode, wherein the method generates filtered front wheel steering corrections, and automatically commanding articulation of the front frame relative to the rear frame about the articulation joint in response to the filtered front wheel steering corrections.
Abstract:
An apparatus and method are provided for operating a motor grader having steerable front wheels and a front and rear frame pivotally connected at an articulation joint. The method includes selecting an automatic articulation mode, and commanding front wheel steering to turn the motor grader, providing a plurality of front wheel steering corrections to an electronic controller, filtering the plurality of front wheel steering corrections using a method for filtering steering corrections based on the constant curve mode, wherein the method generates filtered front wheel steering corrections, and automatically commanding articulation of the front frame relative to the rear frame about the articulation joint in response to the filtered front wheel steering corrections.
Abstract:
A secondary control device may obtain main control information regarding an implement. The secondary control device may obtain monitoring information regarding the implement. The secondary control device may determine, using a first reduced functionality processing technique, secondary control information regarding the implement based on the monitoring information. The secondary control device may determine, using a second functionality processing technique, based on the main control information, the monitoring information, or the secondary control information, that a critical error associated with the implement has occurred. The secondary control device may determine a circumstance associated with the critical error. The secondary control device may select, based on determining the circumstance, a control technique and may control the implement using the control technique.
Abstract:
When engaged, an articulation controller automatically adjusts an angle of articulation between a front frame and a rear frame of a motor grader based on a steering angle of the front wheels. If a groundspeed of the motor grader exceeds a threshold groundspeed, the articulation controller enters a mode that only allows decreasing the angle of articulation of the motor grader. When the angle of articulation reaches zero, the articulation controller disengages until the groundspeed is reduced below the threshold groundspeed.
Abstract:
A control may obtain first data related to a plurality of positions of an implement of a work machine during a first time period and may determine, based on the first data, a first noise value related to at least one velocity of the implement for the first time period. The control device may obtain second data related to a plurality of positions of the implement during a second time period and may determine, based on the second data, a second noise value related to at least one velocity of the implement for the second time period. The control device may determine, based on the first noise value and the second noise value, a start of motion of the implement. The control device may cause, based on determining the start of motion of the implement, the implement to be calibrated.
Abstract:
A control device may obtain data related to at least one position of an implement of a work machine that has moved to a set position. The control device may identify one or more first noise amplitudes associated with the data and may determine, based on the one or more first noise amplitudes, a noise band related to the implement vibrating at the set position. The control device may identify one or more second noise amplitudes associated with the data and may determine, based on the noise band and the one or more second noise amplitudes, that the implement has settled at the set position. The control device may allow, based on determining that the implement has settled at the set position, the implement to move to another position.
Abstract:
Activation of an automatic articulation control function in an articulated machine is delayed until error conditions are cleared or a steering angle to alignment angle mismatch is corrected. A controller monitors a selector setting indicating a desire to activate the automatic articulation control function. The controller also evaluates whether conditions such as low ground speed, loss of signal from needed sensors, or articulation misalignment are present. If so, the conditions are monitored and when corrected, the automatic articulation control function is activated. An indicator may be set to inform an operator that the automatic articulation control function is pending activation.
Abstract:
An articulation control system for a machine may include an actual steering sensor configured to provide a signal indicative of an actual steering angle, a timer configured to provide a signal indicative of an elapsed predetermined period of time, and a controller in communication with the actual steering sensor and the timer. The controller may be configured to regulate automatic articulation to zero based on signals received from the actual steering sensor and the timer.
Abstract:
A controller monitors groundspeed in an articulated machine and selectively disables an automatic articulation control function when the groundspeed is at or near zero. If there is an indication that an operator may not be aware that the automatic articulation control function is active by comparing when a on switch was activated compared to a machine power cycle or an operator not being present, the automatic articulation control function may be inactivated until the on switch is toggled. If the articulated machine is in neutral and the groundspeed is at or near zero, the automatic articulation control function may disabled. If the groundspeed is at or near zero but the transmission is not in neutral, the machine may simply be stalled to due working conditions and the automatic articulation control function may be maintained.