Abstract:
A method for remote triggered black hole filtering can include advertising a first modified next hop address for a destination address of network traffic, and advertising a second modified next hop address for a source address of network traffic. The first next hop address of the destination address might be overwritten with the first modified next hop address. Filtered traffic then can be forwarded to the first modified next hop address, wherein filtered traffic comprises only network traffic addressed to the destination address or from the source address. In some cases, the filtered traffic is transported and received via a sinkhole tunnel. A second next hop address of the source address can be overwritten to a second modified next hop address. The attack traffic, which can be filtered traffic that is both addressed to the destination address and from the source address, might be forwarded to a discard interface.
Abstract:
A method for remote triggered black hole filtering can include advertising a first modified next hop address for a destination address of network traffic, and advertising a second modified next hop address for a source address of network traffic. The first next hop address of the destination address might be overwritten with the first modified next hop address. Filtered traffic then can be forwarded to the first modified next hop address, wherein filtered traffic comprises only network traffic addressed to the destination address or from the source address. In some cases, the filtered traffic is transported and received via a sinkhole tunnel. A second next hop address of the source address can be overwritten to a second modified next hop address. The attack traffic, which can be filtered traffic that is both addressed to the destination address and from the source address, might be forwarded to a discard interface.
Abstract:
Novel tools and techniques for filtering network traffic in an anycasting environment includes receiving network traffic addressed to a plurality of anycasted servers at an edge router, the plurality of anycasted servers comprising one or more anycasted servers. The network traffic is received from the edge server at least one data scrubbing appliance. The at least one data scrubbing appliance filters out undesirable traffic from the network traffic. The at least one data scrubbing appliance “on-ramps” the filtered network traffic to the plurality of anycasted servers. The filtered network traffic is transmitted to the plurality of anycasted servers in a load balanced manner.
Abstract:
A method for remote triggered black hole filtering can include advertising a first modified next hop address for a destination address of network traffic, and advertising a second modified next hop address for a source address of network traffic. The first next hop address of the destination address might be overwritten with the first modified next hop address. Filtered traffic then can be forwarded to the first modified next hop address, wherein filtered traffic comprises only network traffic addressed to the destination address or from the source address. In some cases, the filtered traffic is transported and received via a sinkhole tunnel. A second next hop address of the source address can be overwritten to a second modified next hop address. The attack traffic, which can be filtered traffic that is both addressed to the destination address and from the source address, might be forwarded to a discard interface.
Abstract:
Examples of the present disclosure describe systems and methods for providing security against IP spoofing. In aspects, network traffic associated with one or more data requests may be received by a device in a computing environment. The network traffic may be evaluated using one or more automated logic systems or algorithms to identify suspicious or malicious behavior. The automated logic systems or algorithms may implement one or more analyses, such as asymmetric routing analysis, hardware device analysis, user and/or network behavior analysis, etc. Upon identifying suspicious or malicious behavior, the automated logic systems or algorithms may apply a filter to one or more computing devices. For example, a filter for blocking network traffic associated with the suspicious or malicious behavior may be applied to a computing device that is in close geographic and/or logical proximity to an attacking computing device.
Abstract:
A method for remote triggered black hole filtering can include advertising a first modified next hop address for a destination address of network traffic, and advertising a second modified next hop address for a source address of network traffic. The first next hop address of the destination address might be overwritten with the first modified next hop address. Filtered traffic then can be forwarded to the first modified next hop address, wherein filtered traffic comprises only network traffic addressed to the destination address or from the source address. In some cases, the filtered traffic is transported and received via a sinkhole tunnel. A second next hop address of the source address can be overwritten to a second modified next hop address. The attack traffic, which can be filtered traffic that is both addressed to the destination address and from the source address, might be forwarded to a discard interface.
Abstract:
Novel tools and techniques for filtering network traffic in an anycasting environment includes receiving network traffic addressed to a plurality of anycasted servers at an edge router, the plurality of anycasted servers comprising one or more anycasted servers. The network traffic is received from the edge server at least one data scrubbing appliance. The at least one data scrubbing appliance filters out undesirable traffic from the network traffic. The at least one data scrubbing appliance “on-ramps” the filtered network traffic to the plurality of anycasted servers. The filtered network traffic is transmitted to the plurality of anycasted servers in a load balanced manner.
Abstract:
Novel tools and techniques for filtering network traffic in an anycasting environment includes receiving network traffic addressed to a plurality of anycasted servers at an edge router, the plurality of anycasted servers comprising one or more anycasted servers. The network traffic is received from the edge server at least one data scrubbing appliance. The at least one data scrubbing appliance filters out undesirable traffic from the network traffic. The at least one data scrubbing appliance “on-ramps” the filtered network traffic to the plurality of anycasted servers. The filtered network traffic is transmitted to the plurality of anycasted servers in a load balanced manner.