Abstract:
Air filtration media and methods of processing the same are described herein. One method of processing an air filtration medium includes mixing an adsorption material, a polymer material, and a reinforcement material, compressing the mixture, and heating the mixture.
Abstract:
Techniques and systems for training an acoustic model are described. In an embodiment, a technique for training an acoustic model includes dividing a corpus of training data that includes transcription errors into N parts, and on each part, decoding an utterance with an incremental acoustic model and an incremental language model to produce a decoded transcription. The technique may further include inserting silence between a pair of words into the decoded transcription and aligning an original transcription corresponding to the utterance with the decoded transcription according to time for each part. The technique may further include selecting a segment from the utterance having at least Q contiguous matching aligned words, and training the incremental acoustic model with the selected segment. The trained incremental acoustic model may then be used on a subsequent part of the training data. Other embodiments are described and claimed.
Abstract:
A method for discriminatively training acoustic models is provided for automated speaker verification (SV) and speech (or utterance) verification (UV) systems. The method includes: defining a likelihood ratio for a given speech segment, whose speaker identity (for SV system) or linguist identity (for UV system) is known, using a corresponding acoustic model, and an alternative acoustic model which represents all other speakers (in SV) or all other linguist identities (in UV); determining an average likelihood ratio score for the likelihood ratio scores over a set of training utterances (referred to as true data set) whose speaker identities (for SV) or linguist identities (for UV) are the same; determining an average likelihood ratio score for the likelihood ratio scores over a competing set of training utterances which excludes the speech data in the true data set (referred to as competing data set); and optimizing a difference between the average likelihood ratio score over the true data set and the average likelihood ratio score over the competing data set, thereby improving the acoustic model.
Abstract:
Techniques for enhanced automatic speech recognition are described. An enhanced ASR system may be operative to generate an error correction function. The error correction function may represent a mapping between a supervised set of parameters and an unsupervised training set of parameters generated using a same set of acoustic training data, and apply the error correction function to an unsupervised testing set of parameters to form a corrected set of parameters used to perform speaker adaptation. Other embodiments are described and claimed.
Abstract:
Techniques and systems for training an acoustic model are described. In an embodiment, a technique for training an acoustic model includes dividing a corpus of training data that includes transcription errors into N parts, and on each part, decoding an utterance with an incremental acoustic model and an incremental language model to produce a decoded transcription. The technique may further include inserting silence between a pair of words into the decoded transcription and aligning an original transcription corresponding to the utterance with the decoded transcription according to time for each part. The technique may further include selecting a segment from the utterance having at least Q contiguous matching aligned words, and training the incremental acoustic model with the selected segment. The trained incremental acoustic model may then be used on a subsequent part of the training data. Other embodiments are described and claimed.
Abstract:
Techniques for enhanced automatic speech recognition are described. An enhanced ASR system may be operative to generate an error correction function. The error correction function may represent a mapping between a supervised set of parameters and an unsupervised training set of parameters generated using a same set of acoustic training data, and apply the error correction function to an unsupervised testing set of parameters to form a corrected set of parameters used to perform speaker adaptation. Other embodiments are described and claimed.
Abstract:
A graphic user interface system for use with a content based retrieval system includes an active display having display areas. For example, the display areas include a main area providing an overview of database contents by displaying representative samples of the database contents. The display areas also include one or more query areas into which one or more of the representative samples can be moved from the main area by a user employing gesture based interaction. A query formulation module employs the one or more representative samples moved into the query area to provide feedback to the content based retrieval system.
Abstract:
A method for discriminatively training acoustic models is provided for automated speaker verification (SV) and speech (or utterance) verification (UV) systems. The method includes: defining a likelihood ratio for a given speech segment, whose speaker identity (for SV system) or linguist identity (for UV system) is known, using a corresponding acoustic model, and an alternative acoustic model which represents all other speakers (in SV) or all other linguist identities (in UV); determining an average likelihood ratio score for the likelihood ratio scores over a set of training utterances (referred to as true data set) whose speaker identities (for SV) or linguist identities (for UV) are the same; determining an average likelihood ratio score for the likelihood ratio scores over a competing set of training utterances which excludes the speech data in the true data set (referred to as competing data set); and optimizing a difference between the average likelihood ratio score over the true data set and the average likelihood ratio score over the competing data set, thereby improving the acoustic model.
Abstract:
An improved discriminative training method is provided for hidden Markov models. The method includes: defining a measure of separation margin for the data; identifying a subset of training utterances having utterances misrecognized by the models; defining a training criterion for the models based on maximizing the separation margin; formulating the training criterion as a constrained minimax optimization problem; and solving the constrained minimax optimization problem over the subset of training utterances, thereby discriminatively training the models.