摘要:
An apparatus, system, and method for shared access to secure computing resources are provided. The apparatus, system, and method include a secure computing module. The secure computing module transacts a secure function for two or more computing modules including an excluding computing module configured to exclusively access the secure computing module. The secure computing module identifies a first computing module transacting the secure function and sets the context of the secure computing module to the first computing module context. The first computing module transacts the secure function, but cannot transact the secure function for a second computing module. The second computing module may also transact the secure function, but may not transact the secure function for the first computing module.
摘要:
A method, computer program, and system for paging platform configuration registers in and out of a trusted platform module. In a trusted computing platform, an unlimited number of platform configuration registers can be obtained through paging. The trust platform module encrypts and decrypts platform configuration registers for storage outside the trusted platform module.
摘要:
A method for a plurality of key cache managers for a plurality of localities to share cryptographic key storage resources of a security chip, includes: loading an application key into the key storage; and saving a restoration data for the application key by a key cache manager, where the restoration data can be used by the key cache manager to reload the application key into the key storage if the application key is evicted from the key storage by another key cache manager. The method allows each of a plurality of key cache managers to recognize that is key had been removed from the security chip and to restore its key. The method also allows each key cache manager to evict or destroy any key currently loaded on the security chip without affecting the functionality of other localities.
摘要:
A solution for verifying an attribute of a computing device. In particular, a computing device can obtain an attribute from another computing device. The attribute can be measure by, for example, a Trusted Platform Module integrated on the other computing device. The computing device can then use an attestation server to determine whether the attribute reflects a desirable value or indicates that the other computing device may have been compromised.
摘要:
A method for theft deterrence of a computer system is disclosed. The computer system includes a trusted platform module (TPM) and storage medium. The method comprises providing a binding key in the TPM; and providing an encrypted symmetric key in the storage medium. The method further includes providing an unbind command to the TPM based upon an authorization to provide a decrypted symmetric key; and providing the decrypted symmetric key to the secure storage device to allow for use of the computer system. Accordingly, by utilizing a secure hard disk drive (HDD) that requires a decrypted key to function in conjunction with a TPM, a computer if stolen is virtually unusable by the thief. In so doing, the risk of theft of the computer is significantly reduced.
摘要:
A method and system for remotely storing a user's admin key to gain access to an intranet is presented. The user's admin key and intranet user identification (ID) are encrypted using an enterprise's public key, and together they are concatenated into a single backup admin file, which is stored in the user's client computer. If the user needs his admin file and is unable to access it in a backup client computer, he sends the encrypted backup admin file to a backup server and his unencrypted intranet user ID to an intranet authentication server. The backup server decrypts the user's single backup admin file to obtain the user's admin key and intranet user ID. If the unencrypted intranet user ID in the authentication server matches the decrypted intranet user ID in the backup server, then the backup server sends the backup client computer the decrypted admin key.
摘要:
A method and system for ensuring security-compliant creation and signing of endorsement keys of manufactured TPMs. The endorsement keys are generated for the TPM. The TPM vendor selects an N-byte secret and stores the N-byte secret in the TPM along with the endorsement keys. The secret number cannot be read outside of the TPM. The secret number is also provided to the OEM's credential server. During the endorsement key (EK) credential process, the TPM generates an endorsement key, which comprises both the public key and a hash of the secret and the public key. The credential server matches the hash within the endorsement key with a second hash of the received public key (from the endorsement key) and the vendor provided secret. The EK certificate is generated and inserted into the TPM only when a match is confirmed.
摘要:
A method and system for ensuring security-compliant creation and signing of endorsement keys of manufactured TPMs. The endorsement keys are generated for the TPM. The TPM vendor selects an N-byte secret and stores the N-byte secret in the TPM along with the endorsement keys. The secret number cannot be read outside of the TPM. The secret number is also provided to the OEM's credential server. During the endorsement key (EK) credential process, the TPM generates an endorsement key, which comprises both the public key and a hash of the secret and the public key. The credential server matches the hash within the endorsement key with a second hash of the received public key (from the endorsement key) and the vendor provided secret. The EK certificate is generated and inserted into the TPM only when a match is confirmed.
摘要:
A method and system for ensuring security-compliant creation and certificate generation for endorsement keys of manufactured TPMs. The endorsement keys are generated by the TPM manufacturer and stored within the TPM. The TPM manufacturer also creates a signing key pair and associated signing key certificate. The signing key pair is also stored within the TPM, while the certificate is provided to the OEM's credential server. During the endorsement key (EK) credential process, the TPM generates a signed endorsement key, which comprises the public endorsement key signed with the public signing key. The credential server matches the public signing key of the endorsement key with a public signing key within the received certificate. The EK certificate is generated and inserted into the TPM only when a match is confirmed.
摘要:
Trusted platform module (TPM) keys are copied to a floppy diskette or fob that is external to the customer device in which the TPM resides, so that if the keys in TPM are zeroed as a result of, e.g., a malicious denial of service attack, they can be copied back from the diskette or fob.