摘要:
A touch sensing apparatus includes a logic control module and at least one input control module. The logic control module generates a plurality of control signals having different control timings, wherein the control signals include an input control signal. The input control module is coupled with the logic control module, wherein each input control module includes a positive input switch and a negative input switch. The input control module controls, according to the input control signal, the positive input switch and the negative input switch to be deactivated or activated to control an input mode of a first sensing voltage and a second sensing voltage, which are analog data respectively sensed through a first sensing line and a second sensing line of a conductive thin film sensor, wherein the first sensing line and the second sensing line are sensing lines of adjacent channels.
摘要:
A touch sensing apparatus is disclosed. The touch sensing apparatus includes a logic control module, at least one storage control module, and at least one decoding control module. The logic control module is used to generate a plurality of control signals having different control timings. The plurality of control signals includes a storage control signal and a decoding control signal. Each storage control module includes a plurality of storage capacitors, and respectively stores each of sensed voltages in different storage capacitors at different times according to a storage control timing of the storage control signal. The sensed voltages are analog data sensed from scan lines of an ITO sensor. The decoding control module performs analog adding process to the sensed voltages stored in the storage capacitors according to a decoding control timing of the decoding control signal to output decoded analog data with high signal-to-noise ratio (SNR).
摘要:
A touch sensing apparatus includes a plurality of pins, a logic control module, and at least one amplifier module. The logic control module generates a plurality of control signals having different control timings, wherein the control signals include an amplifying control signal and a compensating control signal. Each amplifying module includes an amplifying unit and an automatic compensating unit. The amplifying unit includes a positive input end and a negative input end, wherein the amplifying unit determines, according to the amplifying control signal, a difference between a first sensing voltage and a second sensing voltage respectively received by the positive input end and the negative input end and amplifies the difference to output an analog data. The automatic compensating unit records, according to the compensating control signal, a digital compensation value corresponding to one of the pins and outputs the digital compensation value according to the compensating control signal.
摘要:
A touch sensing apparatus is disclosed. The touch sensing apparatus includes a logic control module, at least one storage control module, and at least one decoding control module. The logic control module is used to generate a plurality of control signals having different control timings. The plurality of control signals includes a storage control signal and a decoding control signal. Each storage control module includes a plurality of storage capacitors, and respectively stores each of sensed voltages in different storage capacitors at different times according to a storage control timing of the storage control signal. The sensed voltages are analog data sensed from scan lines of an ITO sensor. The decoding control module performs analog adding process to the sensed voltages stored in the storage capacitors according to a decoding control timing of the decoding control signal to output decoded analog data with high signal-to-noise ratio (SNR).
摘要:
A touch sensing apparatus is disclosed. The touch sensing apparatus includes a logic control module, at least one storage control module, and at least one decoding control module. The logic control module is used to generate a plurality of control signals having different control timings. The plurality of control signals includes a storage control signal and a decoding control signal. Each storage control module includes a plurality of storage capacitors, and respectively stores each of sensed voltages in different storage capacitors at different times according to a storage control timing of the storage control signal. The sensed voltages are analog data sensed from scan lines of an ITO sensor. The decoding control module is used to decode the sensed voltages stored in the storage capacitors according to a decoding control timing of the decoding control signal to output the decoded analog data.
摘要:
The present invention provides a touch sensing apparatus including a plurality of pins, a logic control module, and at least one driving/sensing control module. The logic control module generates a plurality of control signals having different control timings. Each driving/sensing control module is coupled with the logic control module and the pins, wherein the driving/sensing control module receives a first control signal of the control signals from the logic control module and controls the pins to execute a plurality of pin functions according to a first control timing of the first control signal, so that the pins simultaneously sense a plurality of analog data from a conductive thin film sensor.
摘要:
The present invention provides a touch sensing apparatus including a plurality of pins, a logic control module, and at least one driving/sensing control module. The logic control module generates a plurality of control signals having different control timings. Each driving/sensing control module is coupled with the logic control module and the pins, wherein the driving/sensing control module receives a first control signal of the control signals from the logic control module and controls the pins to execute a plurality of pin functions according to a first control timing of the first control signal, so that the pins simultaneously sense a plurality of analog data from a conductive thin film sensor.
摘要:
A touch sensing apparatus is disclosed. The touch sensing apparatus includes a logic control module, at least one storage control module, and at least one decoding control module. The logic control module is used to generate a plurality of control signals having different control timings. The plurality of control signals includes a storage control signal and a decoding control signal. Each storage control module includes a plurality of storage capacitors, and respectively stores each of sensed voltages in different storage capacitors at different times according to a storage control timing of the storage control signal. The sensed voltages are analog data sensed from scan lines of an ITO sensor. The decoding control module is used to decode the sensed voltages stored in the storage capacitors according to a decoding control timing of the decoding control signal to output the decoded analog data.
摘要:
A touch sensing apparatus includes a plurality of pins, a logic control module, and at least one driving/sensing module. The driving/sensing control module is coupled with the pins and the logic control module. The driving/sensing control module controls the pins to execute a driving function according to a driving control signal at high voltage level and output a high voltage to a conductive thin film sensor. The driving/sensing control module includes an isolating switch, a high voltage device, and a medium/low voltage device, wherein the isolating switch is coupled with the high voltage device and the medium/low voltage device. The driving/sensing control module activates the isolating switch according to a isolating control signal at high voltage level to isolate the medium/low voltage device from the high voltage device for avoiding the high voltage from entering into the medium/low device that results in the damage of the medium/low voltage device.
摘要:
A frame rate control (FRC) method is provided for driving a number of pixels according to a number of pixels data. The pixels include a number of first color sub-pixels. In this method, the dithering process is performed to the pixels data in two frames according to two basic matrixes respectively. In one of the two frames, the numbers of the first color sub-pixels, driven by the positive pixel voltages and the negative pixel voltages and to which the dithering process has been performed, are the same in substantiality. Further, in the other of the two frames, the numbers of the first color sub-pixels, driven by the positive pixel voltages and the negative pixel voltages and to which the dithering process has been performed, are also the same in substantiality.