摘要:
An outer rim seal arrangement (10), including: an annular rim (70) centered about a longitudinal axis (30) of a rotor disc (31), extending fore and having a fore-end (72), an outward-facing surface (74), and an inward-facing surface (76); a lower angel wing (62) extending aft from a base of a turbine blade (22) and having an aft end (64) disposed radially inward of the rim inward-facing surface to define a lower angel wing seal gap (80); an upper angel wing (66) extending aft from the turbine blade base and having an aft end (68) disposed radially outward of the rim outward-facing surface to define a upper angel wing seal gap (80, 82); and guide vanes (100) disposed on the rim inward-facing surface in the lower angel wing seal gap. Pumping fins (102) may be disposed on the upper angel wing seal aft end in the upper angel wing seal gap.
摘要:
A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.
摘要:
An outer rim seal arrangement (10), including: an annular rim (70) centered about a longitudinal axis (30) of a rotor disc (31), extending fore and having a fore-end (72), an outward-facing surface (74), and an inward-facing surface (76); a lower angel wing (62) extending aft from a base of a turbine blade (22) and having an aft end (64) disposed radially inward of the rim inward-facing surface to define a lower angel wing seal gap (80); an upper angel wing (66) extending aft from the turbine blade base and having an aft end (68) disposed radially outward of the rim outward-facing surface to define a upper angel wing seal gap (80, 82); and guide vanes (100) disposed on the rim inward-facing surface in the lower angel wing seal gap. Pumping fins (102) may be disposed on the upper angel wing seal aft end in the upper angel wing seal gap.
摘要:
A vane array adapted to be coupled to a vane carrier within a gas turbine engine is provided comprising: a plurality of elongated airfoils comprising at least a first airfoil and a second airfoil located adjacent to one another; a U-ring; first connector structure for coupling a radially inner end section of each of the first and second airfoils to the U-ring; second connector structure for coupling a radially outer end section of each of the first and second airfoils to the vane carrier; a platform extending between the first and second airfoils; and platform connector structure for coupling the platform to one of the U-ring and the vane carrier.
摘要:
A ring segment for a gas turbine engine includes an outer panel defining a structural body for the ring segment. An outer side of an inner panel is attached to an inner side of the outer panel at an interface, and an inner side of the inner panel defines a portion of a hot gas path through the gas turbine engine. An outer side of the outer panel, opposite from the interface, is in communication with a source of cooling air. A plurality of impingement holes extend through the outer panel from the outer side to the inner side of the outer panel for directing impingement air to the outer side of the inner panel. The outer and inner panels define a plurality of flow channels at the interface for effecting convective cooling of the outer panel along the flow channels between the outer and inner panels.
摘要:
An air cooled gas engine turbine blade that includes a plurality of longitudinally spaced cavities adjacent the leading edge of the blade is designed to include angularly disposed impingement passages flowing cooling air into each of the cavities in a direction extending from the root to the tip of the blade and including an annular projection upstream of the impingement passage but adjacent thereto for directing air into the respective cavities with total instead of static pressure. The impingement holes are oriented to align with the film cool holes in the blade surface at the leading edge. Ribs formed between cavities are also oriented to be parallel to the impingement holes.