-
公开(公告)号:US12123820B1
公开(公告)日:2024-10-22
申请号:US18648343
申请日:2024-04-27
Applicant: Chongqing University
Inventor: Le Han , Ting Zou , Jian Liu , Lu Zhou , Haoquan Zhang , Jingmei Yao
IPC: G01N15/08 , B01D65/10 , C02F1/46 , G01N15/12 , G06F30/27 , G06N3/04 , G06N3/044 , G06N3/0464 , G06N3/08 , G06N20/00 , G16C20/70
CPC classification number: G01N15/08 , B01D65/109 , C02F1/46 , C02F1/4602 , G01N15/12 , G06F30/27 , G06N3/044 , G06N3/0464 , G06N3/08 , G06N20/00 , G16C20/70 , G01N2015/0853
Abstract: The present application introduces a membrane fouling warning methodology grounded in machine learning. It utilizes a machine learning-based membrane fouling prediction model to automatically forecast and generate electrochemical information values, which characterize the extent of membrane fouling at various time points, based on influent water quality parameters. It then acquires the electrochemical information values Zt at a moment t and Z++Δt at a moment t+Δt. Subsequently, it computes and assesses the respective fouling levels using the electrochemical information values derived from the membrane fouling prediction model. Finally, it issues an early warning signal contingent upon the determined warning level. This methodology facilitates proactive understanding and management of membrane fouling, thereby sustaining the normal operation of the membrane fouling treatment system, mitigating the propensity for membrane assembly fouling, and prolonging the operational lifespan of the membrane assembly.