摘要:
A dual panel-type organic electroluminescent display device includes a first substrate on which gate and data lines cross each other to define sub-pixels. Array elements are disposed at the sub-pixels on the first substrate. A first electrode is disposed on substantially the entire surface of a second substrate opposing the first substrate. An insulating pattern is disposed on the first electrode, an organic electroluminescent layer is disposed on the first electrode, and a second electrode is disposed on the organic electroluminescent layer at each sub-pixel. A connection pattern connects the array element and the second electrode at each sub-pixel. The connection pattern contacts the second electrode under the insulating pattern.
摘要:
A dual panel-type organic electroluminescent display device includes a first substrate on which gate and data lines cross each other to define sub-pixels. Array elements are disposed at the sub-pixels on the first substrate. A first electrode is disposed on substantially the entire surface of a second substrate opposing the first substrate. An insulating pattern is disposed on the first electrode, an organic electroluminescent layer is disposed on the first electrode, and a second electrode is disposed on the organic electroluminescent layer at each sub-pixel. A connection pattern connects the array element and the second electrode at each sub-pixel. The connection pattern contacts the second electrode under the insulating pattern.
摘要:
A dual panel-type organic electroluminescent display device includes a first substrate on which gate and data lines cross each other to define sub-pixels. Array elements are disposed at the sub-pixels on the first substrate. A first electrode is disposed on substantially the entire surface of a second substrate opposing the first substrate. An insulating pattern is disposed on the first electrode, an organic electroluminescent layer is disposed on the first electrode, and a second electrode is disposed on the organic electroluminescent layer at each sub-pixel. A connection pattern connects the array element and the second electrode at each sub-pixel. The connection pattern contacts the second electrode under the insulating pattern.
摘要:
A dual panel-type organic electroluminescent display device includes a first substrate on which gate and data lines cross each other to define sub-pixels. Array elements are disposed at the sub-pixels on the first substrate. A first electrode is disposed on substantially the entire surface of a second substrate opposing the first substrate. An insulating pattern is disposed on the first electrode, an organic electroluminescent layer is disposed on the first electrode, and a second electrode is disposed on the organic electroluminescent layer at each sub-pixel. A connection pattern connects the array element and the second electrode at each sub-pixel. The connection pattern contacts the second electrode under the insulating pattern.
摘要:
The present invention relates to a scroll compressor, including: a hermetic container, refrigerant flowing in and out of which; a driving unit installed in the hermetic container to rotate a rotation axis; an orbiting scroll fixed to the rotation axis and rotated with the rotation axis; and a fixed scroll fixed to the hermetic container, engaged with the orbiting scroll to define a compression chamber, and compressing refrigerant by an interaction with the orbiting scroll, a discharge direction of a discharge space-side discharge hole heading from the compression chamber to the discharge space not corresponding to a discharge direction of a compression chamber-side discharge hole. The scroll compressor reduces pulsation noise of refrigerant to improve noise performance.
摘要:
A method of fabricating an electrode for an organic electroluminescent device includes forming a transparent conductive layer on a substrate, doping the transparent conductive layer with impurities, and annealing the doped transparent conductive layer.
摘要:
An organic light emitting display device (OLED) includes a transparent substrate a first electrode formed on the transparent substrate a partition wall including first and second tapered structures having different tapers and formed on the first electrode, and an organic light emitting layer stacked on both sides of the first electrode below a level of the partition wall and a second electrode. The OLED device is manufactured by, for example, forming a first electrode on a transparent substrate, forming a partition wall having first and second tapered structures on the first electrode, and forming an organic light emitting layer and a second electrode, sequentially, on both sides of the first electrode below a level of the partition wall.
摘要:
A method of fabricating an electrode for an organic electroluminescent device includes forming a transparent conductive layer on a substrate, doping the transparent conductive layer with impurities, and annealing the doped transparent conductive layer.
摘要:
An organic light emitting display device (OLED) includes a transparent substrate a first electrode formed on the transparent substrate a partition wall including first and second tapered structures having different tapers and formed on the first electrode, and an organic light emitting layer stacked on both sides of the first electrode below a level of the partition wall and a second electrode. The OLED device is manufactured by, for example, forming a first electrode on a transparent substrate, forming a partition wall having first and second tapered structures on the first electrode, and forming an organic light emitting layer and a second electrode, sequentially, on both sides of the first electrode below a level of the partition wall.
摘要:
A method of fabricating an electrode for an organic electroluminescent device includes forming a transparent conductive layer on a substrate, doping the transparent conductive layer with impurities, and annealing the doped transparent conductive layer.