-
公开(公告)号:US20060115145A1
公开(公告)日:2006-06-01
申请号:US10999880
申请日:2004-11-30
IPC分类号: G06K9/62
CPC分类号: G06K9/6296 , G06T7/11 , G06T7/143 , G06T7/162 , G06T2207/20081
摘要: A Bayesian approach to training in conditional random fields takes a prior distribution over the modeling parameters of interest. These prior distributions may be used to generate an approximate form of a posterior distribution over the parameters, which may be trained with example or training data. Automatic relevance determination (ARD) may be integrated in the training to automatically select relevant features of the training data. From the trained posterior distribution of the parameters, a posterior distribution over the parameters based on the training data and the prior distributions over parameters may be approximated to form a training model. Using the developed training model, a given image may be evaluated by integrating over the posterior distribution over parameters to obtain a marginal probability distribution over the labels given that observational data.
摘要翻译: 贝叶斯方法在有条件的随机场训练中先前分配了所关注的建模参数。 这些先前的分布可以用于生成可以用示例或训练数据训练的参数上的后验分布的近似形式。 自动相关性确定(ARD)可以集成在训练中,以自动选择训练数据的相关特征。 从经过训练的后验分布参数,基于训练数据和先验参数分布的参数后验分布可以近似形成训练模型。 使用开发的训练模型,可以通过对参数上的后验分布进行积分来评估给定图像,以便在给定观测数据的情况下获得标签上的边际概率分布。